AD-A138 890 PRELIMINARY DSRS DESIGN{U} STANFORD UNIV CA DEPT OF
COMPUTER SCIENCE T O BINFORD ET AL. SEP 83
. RADC-TR-83-216 F30602-81-C-0169
UNCLASSIFIED .

— oo

et

{
i

fle2

FEEEEEE R

EEEE
*EE

—
er
r
13
=
N
o

et = o
1.6

lizs s wis

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Gf STANDARDS-1963-A

i e n e L

sk

g

k..“,

ADA13889(

RADC-TR-83-216
Final Technical Report
September 1983

PRELIMINARY DSRS DESIGN

Stanford University

Thomas O. Binford and H. Harlyn Baker

; .
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION ~ UNLIMITED
i ! 4
[. . T
: EL " w5
¢ MAR 1 2 1984

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441

DTC EILE COPY

84 03 12 o010

B . <o

-
P e g Y

A

A ~ e

-\

This report has been reviewed by the RADC Public Affairs Off ice (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-83-216 has been reviewed and is approved for publication.

APPROVED: /{) ™ /

J Ve
Al
JUHN T. BOLAND
?roject Engineer

APPROVED: ™7 e dlisac> Wwf

THADEUS J. DOMURAT
Acting Technical Director
Intelligence & Reconnaissance Division

FOR THE COMMANDER: % /0%44_/

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (TRRA) Griffiss AFB NY 13441. This will assist us in
meintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

o e AT e o s

e

BT R R S AR T

\

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM
T. REPORT NUMBER

RADC-TR-83-216 0 A/35 996

e ——————n e e——
2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitie)

PRELIMINARY DSRS DESIGN

S. TYPE OF REPORT & PERIOD COVERED
Final Technical Report
1 Jun 82 - 1 Apr 83

6. PERFORMING OG. REPOART NUMBER

N/A

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Thomas 0. Binford F30602-81-C-0169
H. Harlyn Baker

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Department of Computer Science

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Stanford University g;;gga;g
11. CONTROLLING orrlc‘i:‘}fnu: AND ADORESS 12. REPORT DATE

Rome Air Development Center (IRRA) 'ieszizti;’iigf
Griffiss AFB NY 13441 86

. MONITORING AGENCY NAME & ADORESS(1f different from Controlling Otlice) 1S. SECURITY CL ASS. (of this report)
Same UNCLASSIFIED

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the sbstract entered In Block 20, I difterent trom Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: John T. Boland (IRRA)

19. KEY WORDS (Continue on reverse side if necessary and identify by block mumber)
Image Correlation
Stereo Mapping

Q“AOSTRACT (Continue on reverse side if necessary and identify by dlock number)

is report describes Stanford's approach to stereo mapping. This
includes geometric modeling, computer vision and rule synthesis (with
mono and stereo information). Also described are an improved edge
operator (by Mairmont) and Stanford's analysis of epipolar geometry.

A source code listing (in SAIL) of the epipolar analysis program 1is
included.

DD . on'ys 1473 =oimion oF 1 nov 8818 ossOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntered)

I i R

L 4

e e el

Contributions to this research have been made by Harlyn Baker, Thomas Binford, Cary Gray,
Jitendra Malik, David Marimont, and Jean-Frederic Mcller.

R e e]

114
TABLE OF CONTENTS
1 Demonstration of Stereo Mapping Technology
1.1 Imtroduction L . i e e e e e e e e e e e e e e e e 1
1.2 ScopeoftheResearch i i it e e e e e e 1
1.8 Specific Tasks @ ettt e 2
2 Digitising Facility
21 Background L . 0 et e h e e e e e e e e e e e e e e e s
2.2 Imagery Analysis withtheTablet s
3 Inference and Modelling
8.1 Introduction e 5
3.2 Geometric Modelling and Computer Vision 5
3.2.1 Modelling, prediction and interpretation 5
8.2.2 Models and stereomatching0 L0000 0L 6
3.28 OTV rule-basedanalysis v oo 6
OTVitheory © v ¢« i i v st e et o s e e o s a s e o a e 6
OTV with/frommodels e e e e e e e e e e 7
3.9 RuleSynthesis i i v i it ot e e e e e e e e e e 8
3.8.1 Inferencerules i i i i i i e e e e e e e e 8
3.3.2 Monocularandstereorules. 000 e e e e .. 8
3.8.8 Use of inference rulesinatestapalysis 10
4 Image Registration
4.1 Introduction to Epipolar Geometry00 . 12
4.2 Glossaryof Terms © . ¢ v ¢ v v v 4 v e e i e e e e e e e e e e e 13
4.8 Background Theory ¢ . i i it b it e e e e e e e e 14
4.4 Requirementsofthe System 14
4.5 AlgorithmUsed i . 0 i i e e e e e e e e e e e e 14
4.5.1 Camera registrationoutput 14
4.5.2 Epipolar geometry determination 16
4.5.8 Epipoles and cpipolar directions 0., 17
4.5.4 Epipolarlinecalculation, 17
4.5.5 CASE l:twoepipoles v i i i it vt 17
gltheory L o e e e e e e e e e e e e e e e e e 17
blalgorithm e e e e e e e e e e e 18
4.5.6 CASE 2:0neepipcle By i i i e e e e e e e e e 19
a)theory T 19

blalgorssisn L o e e e e e e e e e 19

iv

4.57 CASE3:oneepipole Eg ¢ i v v ooenn 20
aJtheory L e e e e e e e e e e e e e e 20
blalgorsthm o o 21
4.58 CASE4:noepipoles i i v it e 22
altheory e e e e e e e e e e e e e e e 22
dlalgorsthm L e e e e e e e 22
4.6 Transform Parameters ¢ . i i i e e e e 22
4.7 Example of Epipolar Registration and Transformation 28
5 Analysis of Automated Stereo Mapping
5.1 Background L L L e e e e e e e e e e e e e e e e 27
5.2 Baker System:before e e e e e 28
5.9 Baker System: enhancements 31
5.4 The Marimont EdgeOperator 52
55 TestImagery v i i i e e e e e e e e e e e e e e e e e e e 34
6 Bitpad Instructions
6.1 lustructions for the Digitizing Tablet 35
6.1.1 Introduction. L .o e e e e e e e 35
6.1.2 Setting screen coordinates00 ... 35
6.1.9 Adding segmentsand vertices 36
6.1.4 Editingsegments0 00 e e e e 56
7 Marimont Edge File Format
71 Header ¢ i i i i e 38
7.2 Ledgels i e 38
78 Edgels e 39
74 Clarifications L s e e e e e e e e e e e e e 40
8 Conclusions
81 SUMMArY i i e 41
82 Demonstration 0 e e e e e e e e e e e e e e 41
9 Digitising Program Lo 0000 s e e e 48
10 Epipolar Registration Program 000 61

11 References . . . ¢ v v v v v o v e 75

Stereo Mapping §1.2 1

1: Demonstration of Stereo Mapping Technology

1.1 Introduction

The focus of the research over this postdoctoral contract has been in augmenting and refining the
specification of image matching strategies to be employed in an advanced stereo mapping system.
[nitially, our research task was to evaluate a preliminary design for 2 mapping system, and then
by carrying out test implementations of elements of this proposed system, to iterate on the design
process. As part of a continuing mapping program, this phase of the research would lead to more
effective representations and improved matching strategies for surface reconstruction. The test
implementations would build to provide a foundation on which we would develop an experimental
rule-based stereo matching system. As part of this experimental system, we undertook to develop
an interactive test facility to provide hand synthesized data for rule analysis. A change in the scope
of the project occurred shortly after we had begun the research, and necessitated a redirection in
the emphasis; rather than evaluating or continuing the design, we were to:

a) experiment with an existing matching system (showing its capabilities
and assessing its applicability to the planned system);

b) demonstrate the design and the utility of the rule-based approach to
surface infcrence from monocular information;

c) develop tools to support an interactive test facility.

1.2 Scope of the Research

In a}, we undertook to apply an existing stereo mapping system [Baker 1981} to some new imagery.
This was designed to demonstrate its effectiveness, to expose its limitations, and to suggest both
its role in an advanced mapping system and complementary research needed to improve its utility.
Significant restructuring of the system was called for in enabling it to process this imagery.
Details of these changes are described in section 5, which deals with the matching process. The
modifications have now been implemented, enabling the system to:

e function on the output of an improved edge operator [Marimont 1982];

o use edge extent as one of its parameters in seeking optimized correspon-
dence;

e exploit prepared transform information in processing images whose
epipolar lines are not collinear with the scanning axes of the cameras.

Separate funding sources supported research in analysis and synthesis of rules for inference of
three-dimensional shape from single images. This inference also has application in constraining
search for matches in stereo correspondence. We will describe here some results of this research,

[.

Stereo Mapping §1.8

and, as part of the demonstration, will show its use in shape inference and search constraint in
the domain of Orthogonal Trihedral Vertices (OTV's).

Our work in developing tools has centered on:

a) a system for the hand construction of edge descriptions from hard copy
imagery;

bj an interactive system for determining the transform to bring image
pairs into collinear epipolar registration.

Both of these systems make extensive use of interactive graphics, and the latter takes much
advantage of previous stereo research from our laboratory ([Gennery 1980]).
These are the three principal areas to be covered in this report:

e experimentation with the automated mapping system;
e assessment of rule synthesis from manual and automated edge processes;

e development of test facility tools for edge extraction and image registra-
tion.

1.8 Specific Tasks

We will describe results in these areas of the research through discussion of the following:

a) implementation of the digitizing test facility;

b) the use of image edge descriptions produced using this facility and
from an automated process [Marimont 1982] in synthesizing rules
for stereo matching;

¢) examination of Orthogonal Trihedral Vertex (OTV) inference rules;

d) development of a system for registration of image pairs;

e) analysis of stereo imagery with an automated stereo process.

Digstizing §2.2 s

2: Digitizing Facility
2.1 Background

Our approach to rule development begins with hand synthesized and some automatically generated
edge data. We have systems for the automatic generation of edge data (s.e. [Marimont 1982]).
This data, extracted from a sufficently wide selection of imagery types, gives good insight into the
current capabilities of automated processes. Automated processes, however, are not able presently
to give as meaningful a description of an image as we would like, and have not been designed to
provide the aggregrated abstractions research systems ([Lowe 1982]) will be soon supplying. To
bridge this inadequacy, we work with both automatically generated data (the current state-of-the-
art), and hand generated data (representative of the next generation of edge analysis processes).
The hand generated data is obtained from a manually operated digitizing tablet. We have written
a graphics-based digitizing and editing system to run with a GTCO tablet in producing these
image descriptions. Section 6 lists instructions for the use of this program with the bitpad (GTCO
tablet), and section 9 contains a source listing of the program.

2.2 Imagery Analysis with the Tablet

Figure 2-1 below shows an image pair of a building complex (referred to as the Sacramento
imagery). Figure 2-2 shows the results of bitpad edge extraction on these images. Figure 2-3 shows
the results of the Marimont operator {Marimont 1982] on the image pair. Manually generated edge
data was produced using this facility for the analysis of rule synthesis of section 3. It was also
used to digitize the building data of figures 2-1 for input to the OTYV inference process, as figure
3-1.

Sacramento Imagery
Figure 2-1

Digitizing §2.2

Manually Extracted Edges |
Figure 2-2

AR

ey
I T

e

Automatically Produced Edges
Figure 2-3

Inference Rules §3.£.1

3: Inference and Modelling

8.1 Introductioa

We have been addressing inference of matching rules and the use of model-based analysis both
with theoretical analyses and with hand and automated analyses of specific matching strategies;
the latter applied to both real and synthesized imagery examples.

We have obtained extended edge data from hand and automated processing for v-» in synthesis
of matching rules. Results from earlier work on OTV analysis (orthogonal tr- 1.1 vertices)
have been exploited, and a demonstration of the use of such a rule for shape -rence and in
constraining search for correspondence has been prepared. Other funding has st '~rted research
in representation of generic structures. We have taken examples from this moc «~ research to
produce ground and aerial views of a building complex, and have used this, as w. ' other data,
in rule synthesis.

8.2 Geometric Modelling and Computer Vision

3.2.1 — Modelling, prediction and interpretation

Of course, one of the primary goals of research in computer vision is the development of systems
that can recognize and locate objects in images. In order to identify such an object, it is clearly
necessary to have some description of its characteristics that can be detected in an image. A
representation of an object is the form this description takes.

One approach to representation is to provide the system with three-dimensional models of objects.
Rotation of these models will allow objects to be observed, conceptually, from differing viewpoints.
If parameters in a particular model are allowed to vary it is possible to have that single model
represent a whole class of objects; constraining the parameters functions to delimit sub-classes.
Further model manipulations, such as partitioning and projection, can be used to aid in mapping
model to imagery data. The information contained in such object models may be used to determine
possible interpretations of image features (e.g. , edges, ribbons, corners) and to provide feedback
to predict the locations of such features in an image.

ACRONYM [Brooks 1981] is a three-dimensional rule-based modelling/vision system developed
here at Stanford that provides, among other things, such feature prediction, model manipulation,
and image interpretation. The rule-base operates on the models and on the sensed data to
accomplish scene interpretation. Such a rule-based approach has been shown to be an effective
form for constraint and search implementation, and allows easy modification and addition of new
rules without the need of altering the underlying code.

Our group’s intention over the next few years is to build a rule-based sterco system operating
vithin ACRONYM whose functioning will include model-based prediction. Working toward tais,

Inference Rules §3.2.8

we have been carrying out experiments on scene inference and model-based prediction that will
lead to a repertoire of stereo matching rules.

3.2.2 — Models and stereo matching

One of the major difficulties in determinine stereo correspondence is in dealing with the large num-
ber of matches that are possible. Solution is generally found by search through a large parameter
space, where possible correspondences are limited by geometric or photometric constraints. Search
can be reduced even more dramatically by endowing the matcher with broad domain specific
and domain independent knowledge. Such knowledge can be rule-based and model-based. Our
proposition here is that the threc-dimensional information in object models, along with inference
and prediction mechanisms, can be used to interpret features in image pairs. These interpreta-
tions can then be used as filters to constrain the matching. We demonstrate this notion with the
example of Orthogonal Trihedral Vertices, often referred to as cube corners or OTVs. Other rules
synthesized from analysis of both manually extracted and automated edge processes follow.

The work on cube corners points to additional usefulness for a model-based approach. OTV
orientation analysis (from matches across pairs of views) yields almost complete solution for camera
parmameters; constraints on sizes (again, from rules and models) could complete the camera
solution. But the orientation information yielded by a match of a pair of vertices is valid only if
the vertex is a cube corner; thus it is necessary to be able to distinguish between vertices that are
cube corners and those that are not. If the models contain suflicient information to identify cube
corners, then the problem of determining cube corners independently of the identification process
is eliminated. In fact, both the search for cube corners and the search for identification are likely
to be reduced when they are combined.

3.2.3 — OTV rule-based analysis

OTYV theory

In cultural scenes, we find a large number of interior and exterior corners of cubes - typically when
two walls at right angles meet the roof or the floor. The importance of utilizing this common
structural element the Orthogonal Trihedral Vertex (OTV) has been emphasized earlicr|[Liebes
1981] .Since they provide a very Light constraint - the three edges are mutually orthogonal in
space - it is possible to calculate the three dimensional orientations given the projections in the
image. This can be done for both orthographic and perspective viewing.

If the eye is assumed to be focussed on the vertex of the cube corner, perspective can be ignored
and the projection of a cube corner in XY Z space will simply be its orthogonal projection on the
XY plane. Suppose that some 3 - star has angles between its rays a, b and ¢ and also that the
rays are represented by the unit vectcrs »y, vg, v3. We are interested in detecting whether there

Inference Rules §3.2.3 7

Py

are three vectors in XY Z space, which are mutually orthogonal and project, respectively to vy,
Vg, V3.

Since projection is accomplished by dropping the z-component, any 3 such vectors must be of the
form vy + A\;2, vo + A2z, and vz + A3z where z is the unit vector in the z-direction.

Requiring mutual orthogonality implies that the dot products of these vectors in pairs be gero.
From these conditions and some simple manipulations we can calculate the formulas for

_ (cosa)(cosc) _ (cos a)(cos b) _ (cosc)(cos b)
M —-:i:v— (cosd) ')\z—iv— (cosc) ’ Xa—:hv— (cosa)

F; Hence solutions exist if w

a) cosa, cosd, cosc are all non-zero and

b) either one or three of cosa, cosb, cosc are negative, so that the quan-
tities under the square root sign are positive.

These results were first derived in [Perkins 1968].

Thus we have a way of both eliminating false candidates for being OTVs and finding the 3-D
. orientations of valid OTV’s. This algorithm has been implemented and run on data from the
digitizing tablet.

OTYV with/from models

Our analysis begins on both images, processing bottom up on the two images separately. As the
rule system identifies likely OTVs in images (from its models), it proceeds to match them. The
system should already have a tentative identification of the buildings containing the OTVs, so
there should be relatively few possible matches at this point. Only OTVs that could be the same
point on the same object need be compared. The analysis results in depths of matched objects,
for all those objects having OTVs.

This requires that the modelling system handle point elements, and that it include both:

e inferring OTVs from models (volumes);

e accessing OTVs stored explicitly with the models.

Inference Rules §3.5.2

£ ichd

£

3.9 Rule Syntheato

g

- N

We continue with the development of inference rules. This work is a logical extension of previous
work [Binford 1881, Lowe 1982 done at Stanford in developing rules for inferring surface infor-
mation from a single view. General assumj.tions about illumination, object geometry, the imaging
process etc. have been used to derive rules for making specific inferences. For stereo vision Arnold
and Binford [Arnold 1980] have developed conditions on correspondence of edge and surface in-
tervals. We divide our rules into two categories: monocular rules, which enable surface inference

B Y YW TR I R
e TR

from a single view; and stereo rules, which facilitate cross-image matching.
3.3.2 — Monocul d stereo
1. Monocular ryles ~ Rules which have been developed for inferences from

monocular views can be utilised to provide a partial 3-dimensional
interpretation which directs search in the second view. This category
includes the rule for interpretation of Orthogonal Trihedral Vertices.

Another example is the T-junction rule [Binford 1981] which states that
‘In absence of evidence to the contrary, the stem of a T is not nearer
than the top, i.e. is coincident tn space or further away’ Application
of this rule gives a set of nearer/farther relations. A hypothesized
correspondence of edges which leads to inconsistent conclusions from
the two views can be pruned from the search.

An image line which is straight must be the image of a straight space
curve unless the curve is planar and the observer is coincidentally
aligned with the plane of curvature. This enables us to dismiss cor-
respondences between straight edges in one view and curves in the other
view. If two image curves are projectively consistent with parallel, we
assume they are images of curves which are parallel in space. That im-
plies that their images in the other view would be parallel i.e. parallels
map to parallels.

As these examples illustrate, most of the rules in [Binford 1981, Lowe
1982} and others developed by Malik and Binford have as direct corol-

laries stereo rules for checking the legality of a match. They can even
direct the search process.

Inference Rules §3.3.2 9

? 2. Stereo Rules - these are rules which have been derived from the stereo
H imaging process, and are a function of the imaging geometry.

An example rule in this class, which has long been used for finding stereo
correspondences, is the epipolars rule - corresponding points must lie on
corresponding epipolar lines. These rules have inherently no monocular
analogs. Here are a few:

‘ a) Horizontal planes in one view get mapped to horizon-
3 tal planes in the other view.

b) Use of projective and quasi-projective invariants. This
has not been examined in detail. Duda and Hart[Duda
1973) devote a chapter to this topic which has not
really been exploited in sterco work.

¢) Conditions on correspondence of edges and surface
intervals[Arnold 1980).

d) urf cclusi

3 Surfaces visible in one view can be occluded in the
) ‘ other view. We arc interested in the conditions when
this takes place. The basic idea is that if we cross a

surface, an obscuration of edge occurs. A left surface
visible in a right view is visible in the left view un-
less there is obscuration by a tall object. Similarly a
right surface visible in a lc¢{i view will be seen unless
obscured by a tall object. These surfacc-obscuration
rules can be formalized by the cross-produet rule:

3 Ql Fo

<q Fz_

For the hypothesized edge match e; with j; and e
with f2, we compute the Z-component of the vec-
tor cross-product in the left image pair and the right
image pair. If the z-components have opposite signs,
‘ve are seeing opposite sides of the surface. That im-
plia3 that the object is not opaque.

10

Inference Rules §3.3.9

3.3.3 — Use of inference rules in a test analysis

Our preliminary results indicate good potential for the success of this approach. On hand simula-
tions with line drawings of stereo pairs, the rules helped narrow down the choices considerably.

Consider the imagery shown in figures 3-1 and 3-2 Figure 3-1 is the right view and 3-2 the left
view. Vertices 1, 2, 3 are orthogonal trihedral vertices. Using the formulae developed earlier, we
can find the 3-D orientations of the edge vectors. These can be matched with the 3-D orientations
) of 1/, 2/, 3’ to obtain a registering of these vertices when combined with the epipolar constraint.
3 All OTV’s in one view need not be visible in the other t.e. 4’. Of the monocular constraints, the

other major constraints which can be seen here are the T-junction rule and the parallels rule. In

figure 3-2 edge 5 is behind edge 6. Edges 7 and 8 are parallel and so are 7/ and 8’. A match of 8

with 9’ would not be accepted. Surfaces S, and Sz are both horizontal planes (as can be deduced
i from the OTV analysis) and can be matched. Surface S; is not horizontal. Here of course, this
does not provide any new information. Surface S¢ being a left face in a left view is not guaranteed
to be visible in the other view - as in fact it is. The cross-product rule could be used to d::miss
a match between 10 and 10’.

Description of Left Image of Stereo Pair
Figure 3-1

Inference Rules §3.3.9 11

_ ?
i
Description of Right Image of Stereo Pair
Figure 3-2
i
|
\ 14

12

Epipolar Geometry §4.1

4: Image Registration
4.1 Introduction to Epipolar Geomeiry

The search process in automated stereo .napping can be greatly restricted, and computation
times significantly reduced, if information is available relating the relative camera geometries of
a stereo pair. Often this information is available in the reconnaisance data (or at least a rough
approximation to it). Other manual and automated schemes have been devised to provide the
information when it is not present with the imagery ([Gennery 1980), [Hallert 1960]). This camera
geometry information allows establishing epipolar correspondence of lines across images. When
this has been done, search in one image for match points of a feature in the other image can be
constrained along a single vector. More generally, any {eatures lying along a particular vector in
the one image may be found along a single vector in the other image. These image plane vectors
are termed epipolar lines. Corresponding vectors are termed corresponding or conjugate epipolar
lines.

In this section we detail an algorithm for determining conjugate epipolar lines in a set of imagery
for which such camera geometry information is not explicitly available. Here, we rely upon an
operator to select corresponding points in the two images. The system automatically improves
the resolution of the correspondence through Fourier interpolation over a match window [Gennery
1980]. The set of such points is taken by an automated camera solver to produce the needed
geometric information. This point selection is done with pan/zoom cursor control on a graphics

device. If the camera information is available (as, for example, from reconnaisance data), then the
point matching phase may be omitted (although this provision has not been enabled in the current
system). Equally, rough camera geometry information, if available, may be used to partially
automate the point selection phase, although again this is not implemented here. [Gennery 1980]
and [Moravec 1980] have implcmented totally automatic camera solvers in their stereo matching
systems. Our next improvement to this system will be to incorporate the image sampling and
feature matching of the [Gennery 1980] system, removing the need for manual point selection.

e e—————.

Epipolar Geometry §4.8 18

4.2 Glossary of Terms

Given two cameras C; and C; with origins #; and #; and focal planes P; and P;, we call:
Bundle of lines; A family of lines containing a common point.

Epipolar coordinates of a point: The number of the epipolar line it belongs to, and its distance to
a fixed reference, like the epipole if it exists.

Epipolar direction: The direction of all epipolar lines if they are parallel.

Epipolar line: The intersection of an epipolar plane with a focal plane. Alternate definition: the
image in one camera of the pre-image of a point in the other camera’s focal plane.

Epipolar plane: Any plane containing the two camera centers 0, and ;.

Epipolar space: A space where the coordinates are the epipolar coordinates. In this space, a
horizontal line is an epipolar line, and the epipole, if it exists, is a whole vertical
line.

' Epipole: The intersection, if it exists, of all epipolar lines in a focal plane.

Conjugate epipolar lines: the intersections of an epipolar plane with the two focal planes.

H

| T

|
Y .
L %JM ta wtecte Joan 0{’ wh usecka °3 Hoiov

MO, 0y wilk P witk Py

Epipolar Geometry
Figure 4-1

[o NN

P —r A YIS

14

Epipolar Geometry §4.5.1

4.3 Background Theory

Given two stereo images P; and P (the content of the focal planes P, and P, of the cameras), an”
two lines Ly and Ly contained in P, and Py, in general every point of L; maps to a line segment. i;
P,, and there is no particular relationship between the line segments mapping to different poin'-

Fundamental property:

Every point in L, will map to a line segment contained in the same line Lq if and only if L; an
L, are a pair of conjugate epipolar lines.

Epipolar Geometry:

The family of epipolar lines in a focal plane is:
Either

a) aset of parallel lines having a common epipolar direction,

or
b) a bundle of lines, the intersection of which is the epipole.

4.4 Requirements of the System

Given a pair of stereo images, we want to:
1) identify the kind of epipolar geometry present in the images;
2) explicitly show the epipolar lines belonging to each image;

3) for each image, compute the parameters which relate the original coor-
dinates to the epipolar coordinates;

4) construct the image transforms in epipolar space.
Prior to these 4 steps, we will need to solve for the cameras, that is, to determine the 5 parameters

describing their relative orientation. A procedure devcloped at Stanford [Gennery 1980} is used
for this. We proceed as above, using simple analytic geometry for our calculations.

4.5 Algorithm Used

4.5.1 — Camera registration output

Each camera is viewed as a referential (6;,z,y,2), : € {1,2}. The registration procedure yields
azimuth, elevation, pan, tilt, and roll of one camera with respect to the other. From thzce, “ve
compute:

M Epipolar Geometry §4.5.1 15

 —— e S VP = ein o

- o » . .
61\&‘\‘\&“ %Lcucﬁ w Ty Cf" ‘;Qn.« %M—L& - ?a_
; Top view of a situation with only one epipole
) Figure 4-2

(W\u\ H t:rL-Bs el ep! olar plame NEE, M
s2n0e values a spote, = noo

£iand By ¢hll \Jou% te e
I“B\k&“ # O‘OLH U.l“ Pld‘d‘ Pz)

Ton view of a situation with epipoies
Figure 4-3

16

Epipolar Geometry §4.5.%

1) the rotation matrix R between the two referentials:

11 Tz "3
R={ra1 rag ras
T31 T3z T33

2) the translation unit vector t, the components of which are:

4 A
B |in the base 8,zyz, | u [in the base O3zyz
v v

Neote that the magnitude of the translation vector cannot be determined from a pair of images.

4.5.2 — Epipolar geometry determination

The focal planes P; are planes parallel to 8,zy, intersecting 6,z at z = f;, the focal distance.
There is an epipole in plane P, if and only if the translation vector intersects this plane, that is,
if and only if its third component is not zero.

We thus determine the casc we are working with:

if v 3£ 0 and v 7 0, there are two epipoles: CASE 1
if ¥ £ 0 and ¥ = 0, there is one epipole £,: CASE 2
if ¥ = 0 and v £ 0, there is one epipole £3: CASE 3
if y =0 and v = 0, there are no epipoles: CASE 4

a) 4 = 0 is replaced in the code by |y| < threshold, where threshold is
chosen as a function of the arithmetic precision of the machine: if we
had infinite precision, then we could consider every case as being case
1. Here threshold = .000! was found to be a good cstimate.

b) Most image pairs will belong to the first case, with ¥ and v of the order
of .1. The epipoles exist, are outside the picture frame, and, for the
images worked with to date, tend to be at a distance ol about 10 times
the picture dimeasion.

—

Epipolar Geometry §4.5.5 17

4.5.3 — Epipoles and epipolar directions

If the epipole E; exists, it is the extremity of the vector collinear to the translation vector, with a
third component equal to f;. If it does not, then the translation vector is the epipolar direction.
Hence:

afy 1 A]
Case 1: Ey(20t, 2y py(2L,th)
Case 2: El(%,g.i—l Va(), u)
!
Case 3: Vi(e, B) Ez(x—.{"; ”—,'h) i
Case 4: Vl(a, ﬂ) V2(Xv I‘)

4.5.4 — Epipolar line calculation

4.5.5 — CASE 1: two epipoles

a) theory

Let M,(z,,¥1,21) be a point in P;. Ey M, defines an epipolar line in Py, and the corresponding
E2M; defines the conjugate epipolar line in P. The plane (E\,6,,0;, E2, M;, M3) contains the
translation vector t and £; M. [ts normal is £y M, X {. The normal of P is #;z. Hence the
intersection of the two planes is given by the vector:

02 X (ElMl X t) = (022 . t)ElMl - (022 -ElMl)t

and E;M; is collinear to this vector. Suppose that in 0,zyz, E;M;: (z1,y1,0). In terms of
components in 3zyz: ‘

0 A zy 1T + T2
02z = y t=lu] ExMi=|vi|=]{raz +ran

1 v 2 r31Z1 + raghy

-

. _ _
Eq M3 is collinear to (uz'l)\zll) = (zl(w“ Ars1) +yi(vra)"”))
vy - nzy z1(vra1 — pray) + y1(vraz — prss)

T S =

A — S i TGEPAET -~ =

Epipolar Geometry §4.5.5

If we let A be the matrix:

(Ufu - Xf31 Vvrig — ngg)
VT3 — ur3y Vrag — jr33

Then we can write EgM; = AE| M; where E; M, is in base 8;zy and E; M is in base 0;zy.

My

Case 1
Figure 4-4

b) algorithm

Let N; be the number of epipolar lines that we want to determine. Each epipolar line is uniquely
dctermined by the angle it makes with the z-axis. Let # be this angle. Given k, the epipolar line
number, 0 < k£ < nl1 — 1, how can we determine 0? If 8y and 8, are the lower and upper limits
between which @ is allowed to vary, and §; = (%;.‘_0)' then we will choose the middle of each
interval: @ = 6y + (k + .5)8; But what are 6y and 8,7 We have to distinguish between taree cascs:

o The epipole is in the picture (very unlikely). Then @ can vary between
0 and 2x radians;

Epipolar Geometry §4.5.6 19

. e The epipole is outside the image: there is a minimum and maximum

- angle under which the image is seen from this point. If we choose these
angles in [0, 2x], then most ¢ the time every 6 € [0p,0,] will define a
valid epipolar line in Py;

o The exception from above is when the epipole is left of the image but on
a same vertical level: then [00,01] cannot be connected and still included

in [0,2x]. In this case we will choose the angles in [T, §].

Then L, will be defined by the point E; and the vector V(cosf, sinf)}, and Ly is defined by F,
and V3 = AV,.

4.5.6 — CASE 2: one epipole E,

- a) theory

Given an epipolar line E’,&hﬁ we alrcady know that the corresponding epipolar line Lg in Ps is
collinear to the vector t = V3(X, u). Hence we just need to find a point belonging to L;. Clearly,
§ Ly is the intersection of P; with the plane (E;, M}, 0;). Thus any line contained in this plane will
intersect P, at a point contained in Lg. In particular, consider the parallel to L; driven through
03. 1t intersects Pz, thus Lz, at M3 such that, in base f;zyz:

ras Ty
T+ 12y folninan

g EM, =] =\, y
1My = 217y + r22ys hence 0, M; = v T +ra2
E ' f2'3181+'3nhl
317 + raay f2
b) algorithm

In the same way as in case 1, we definc Ly(k,, V|) where V|(z), = cosf,z; = sinf;). Then Ly is
defined by (M3, Va), where the coordinates of Mj are

fa—

(11Ty + r2y ™)z -t f:zvl)
1 J2
r3;i 1 + ray T3z + a2

20

Epipolar Geometry §4.5.7

19 PL
¢
; Case 2
Figure 4-5
:)
i
4.5.7 — CASE 3: one epipole E;
a! theory
- Let an cpipolar line in P; be defined by the translation vector ¢t = V; and by a point M; we

pick. In P,, Lo goes through E; and is collinear to a vector KoMy, intersection of Pp with the
plane (82, E2, M,). This plane is orthogonal to 02 M; X t and P; is orthogonal to 8;z. Hence the
intersection is collinear to 832 X (03 M; X t)

since 0; M, = 050, + 0, M,
=kt+ 0, M;,
O My Xt=0,M Xt
4 and 0,z X (02M| X t) = (022 . 1)01M1 - (\722 ~011J|)t.

Epipolar Geometry §4.5.7 21

Suppose 6; My : (z1,¥1, f1) in 8yzyz. Then in O3zyz:

0 A Ty r11Z1 + T2 + 13
bz=|0), t={u) O6M =|y)|=]|raz+rzy +rah
4 1 v z r31T1 + r32y1 + r3sfi

E2 M3 is thus collinear to:

(u:c’, -)\Z’l) _ (Zl(llfu - X1'31) + yg(l/‘rlg -)\1"32) + fl(‘r]a - >\f33))
vy — uz} z1(vrar — pra1) + yi(vree — prae) + fi(vres — prss)

Hence, if we let A be the same matrix as in CASE 1 and OF3 be the offset matrix:

* (Vfla -)\733)
“f Vro3 — Ur33
Then we have: Eo My = A0, M, + OF3

Where #; M, is in base #;zy and E; M; is in base O2zy
b) algorithm

Now, how do we pick M in the first place? We want a set of N, equally spaced epipolar lines,
. and it appears convenient to pick points on the axes. If the epipolar lines are more horizontal,
; or the image stretched in height, then we will pick N; equally spaced points on the vertical axis,
‘ suitably located to cover the entire image. If the epipolar lines are more vertical or the image
more stretched in width, then we pick them on the horizontal axis. Let L., L, be the picture

dimensions and (Vy, V) the epipolar direction:

If VL, < VL., and V, < 0, we pick y; = (LA%'H + L) K+(l).5)
- If VoLy < ViyLs, and V, > 0, we pick gy = (Lo ¥ + Ly)(5422) — L3
If Vsz < VzLyy and Vy < 0, we pick I = (LV|$:.| + L,)(K+?'5

I VyL, < VZLy, and Vy > 9, we pick 7y = (Ly| 2| + L) EE2E) - L,,;?:

Then we proceed as indicated akove:

111(M1, V| = t) is matched with LQ(EQ, Vg = EQMQ).

L N e AY Ve g L Ao e e S . L e - . ST

R -
R W
1% tx-wt‘la\:t.

b e o b

Epipolar Geometry §4.6

4.5.8 — CASE 4: no epipoles

a! theory

Let an epipolar line in P, be defined by the translation vector ¢ = V, and by a point M; we pick.
In P3, Ly goes through the image of M;, that is the extremity of a vector collinear to 4, M; and
whose third component is f2. In base #,zyz,0; M, : (z1,y1, f1). In base f3zyz:

r1z r r ruritrianitrisfy

nz1 +rizy1 + 13 0. M / 'u::imzmjt'nlrn

— — 73171 Y7231 v7as]1

01 M, 2121 + ra2y1 + 123 22 f2 raZFi+raayitrasf
3171 + 13291 + razh fa

b) algorithm
We pick points E; in the same manner as in case 3. Then we calculate 82 M, as indicated above
and we match Ly(Ey,t) with Ly(Eg, t).

4.6 Transform Parameters

We want to output the minimum necessary parameters to do the following transformation:
given the coordinates of one point in one image, find its coordinates in epipolar space.

We treat the problem only in CASE 1, which is the most common case encountered. For this case,
we will need:

e the coordinates of the epipoles;

e the number of epipolar lines;

e the minimum and maximum angle 6y and 6, under which picture 1 is
viewed;

e the minimum distances Dymin and Dymin of the epipoles to the
images;

e the matrix R, or rather its inverse R~!.

Epipolar Geometry §4.7 29

For example, the images of figure 5-6 have transform parameters as follows:

Case =1
N = 450
En = 3537553
E,; = 166509.8
Eqy = —7765.348
Ezg = —3509.268
0o = 3.578705
0, = 3.577792
Diymin = 393249.0
Dymin = 8521.478
Ry = 430.7463
Ry} = 2375.517
Rz = 215.9756
R33! = 1075.811

4.7 Example of Epipolar Registration and Transformation

Figure 4-8 shows a stereo pair of a building complex. Figure 4-7 has this pair superpositioned with
a cet of corresponding epipolar lincs. Figure 4-8 shows the imagery transformed such that cp.polar
lines are horizontal in the imsge, ard conjugate cpipolar lines have the same row coordinrie.

Eptpolar Geometry §4.7

Sacramento Building Iage Pair
Figure 4-6

25

Epipolar Geometry §4.7

Epipolar Lines in this Imagery
Figure 4-7

Epwpoiar Ceometry 447

Transtormed Lwmay, vy

IFigure 4-8

Automated Mapping §5.1 27

5: Analysis of Automated Stereo Mapping
5.1 Background

Results from our laboratory over the past few years [Quam 1971, Hannah 1974, Moravec 1980,
Gennery 1980, Arnold 1980, Baker 1981, Arnold 1983], have demonstrated the possibilities of both
area-based and feature-based stereo matching.

Area-based stereo matching uses windowing mechanisms to isolate parts of two images for cross-
correlation. Feature-based stereo matching uses two-dimensional convolution operators (and per-
haps grouping operators) to reduce an image to a depiction of its intensity boundaries, which
can then be put into correspondence. Area-based cross-correlation techniques require distinctive
texture within the area of correlation for successful operation. They break track:

e where there are ambiguous textures or featureless areas (roofs, sand
and concrete);

e where the correlation area crosses surface discontinuities (at occlusions
such as buildings, or thin objects (poles));

e where depth is ill-defined (such as through trees).

In general, these systems break track where there is no local correlation (zero signal, or where two
images do not correspond) or where the correlation is ambiguous (where the signal is repetitive).
The systems must be started manually and corrected when they break track.

Demands of mapping in cultural sites and in locales with surface discontinuity and ambiguous
or non-existent texture make it essential that, if area-based analysis is to be done, it be done
in conjunction with feature-based analysis. Feature-based analysis provides a solution to many
of the problems of correlation. Principal among its advantages is that it operates on the most
discriminable parts of an image: places that are distinctive in their intensity variation, and where
localization is greatest. These are typically the boundaries between objects or between details on
objects, or between objects and their backgrounds. The important point is that the features being
put into correspondence for depth estimates are the boundaries of objects: area-based analysis is
at its worst at object boundaries, yet determining boundaries can be said to be the most important
part of mapping in 3-space.

28

Automated Mapping §5.2

Some other advantages of feature-based analysis are:

a) reduced combinatorics — there are fewer features than pixels,

b) greater accuracy — features can, in general, be positioned to sub-pixel
precision, while area positioning precision is inversely proportional to
window size, and considera’ly poorer, and

¢) more realistic invariance assumptions — area-based analysis presup-
poses that the photometric properties of a scene are invariant to viewing
position, while feature-based analysis works with the assumption that
it is the geometric properties that are invariant to viewing position.

The Baker system [Baker 1981) is the only current system that mixes these two matching

modalities. We undertook in this postdoctoral work to demonstrate the capabilities of this system
applied to new cultural imagery.

5.2 Baker System: before

In the Baker system, image edges are the features considered in stereo matching. These edges
are located at positions in the image where a change in sign of second difference in intensity
occurs. In the initial case a particular operator (one that was 1 by 7 pixels in size) measured the
directional first difference in intensity at each pixel. Second differences were computed from these,
and changes in sign of these second diffcrences were used to interpolate zero crossings (i.e. peaks
in first difference). Certain local properties other than position were measurcd and associated with
each edge — contrast, orientation, and intenaity to either side — and links were kept to nearest
neighbors above, below, and to the sides. It is these properties that define an edge and provide
the basis for the correspondence process.

The correspondence is a search for edge matches across images. With no prior knowledge of the
viewing situation, one could have any edge in one image matching any edge in the other. The
combinatorics of a naive matching strategy clearly could be enormous. A lot of the analysis of
a matching strategy goes into bounding this combinatorics and constraining the search for edge
correspondences.

One of the principal constraints used in stereo analysis may be determined from a knowledge of
the relative attitudes of the cameras. If two equalivalent cameras are arranged with axes parallel,
as shown in Figure 5-1, then they can be conceived of as sharing a single common image plane.
Any point in the scene will project to two points on that jcint image plane (one through each of
the two lens centers), the connection of which will prodrce a line parallel to the baseline between
the cameras. Thus corresponding edg~s in the tw> images muct lie along the same line in the

\ e —

ime b

- v
& -
.
|
1

)
y .
D
'v
4
b

Automated Mapping §5.2 29

joint image plane. This line is termed an epipolar line (see [Hallert 1960], and section 4). If the
baseline between the two cameras happens to be parallel to the scanning axis of the cameras, then
the correspondence only need consider edges lying along matched lines parallel to that axis in the
i two images. These lines are termed conjugate. Figure 5-1 indicates this camera geometry a
L geometry which produces collinear epipolar lines. The algorithm described here assumed the stereo
' pair to have such a geometry, and if this was not the case then the appropriate transformation
of the two images had to be made before any processing could be done. A less restrictive solution
would be to have the correspondence process informed of the camera geometries, and have it solve
E, for the more general epipolar situation as shown in figure 5-2. Incorporation of this capability is
one of the enhancements we have made to the system over the past few months. Section 4 details
the analysis for this solution.

~~~~~~ scere
po Nt

rmeg NG centraes

cemerese bese/’/ rne

projectrons of

scena por/nt
N Imeage p/aNes correspond:'ng
e poler [ imes

Specialized Epipolar Geometry
Figure 5-1




e

30

Automated Mapping §5.2

The advantage of processing along epipolar lines is that the search for correspondence may be
constrained to one dimension, along a single line-pair. It is then feasible to apply an cfficient
optimization process to the matching problem. The Viterbi algorithm [Forney 1973] is the
optimization process used in this system. It is a dynamic programming technique used extensively
in speech processing, and first used in vision research in some recent work at Control Data
Corporation [Henderson 1979]. An earlier use of a dynamic programming technique for stereo
matching is documented in [Gimel'farb 1972). [Baker 1981] describes in detail the use of the

Pr1nc tpel
Verc/ce/ //ne

Epitpoler exis

Prr1ncirpoe’
MNHor-s zorn /e

Left
rmege plene Corresponding imege [/l ene
Epipoltar /ines

General] Epipolar geometry
Figure 5-2

Viterbi algorithm for sterco correspondence.

Other geometric and photometric constraints may be introduced both in limiting search and
in bounding parameters for the evaluation function. [Arnold 1980] and [Baker 1981] provide
discussions of thesc constraints in determining edge correspondences.




Automated Mapping §5.8 31

5.8 Baker System: enhancements

As stated, we undertook in this postdoctoral work to demonstrate the capabilities of the Baker
system [Baker 1981] applied to some cultural scenes. Before carrying out these analyses we:

a) enhanced the system with a capability to work with a better edge
operator [Marimont 1982);

b) enabled it to process images that are not graced with collinear epipolar
geometry (i.e. most images);

¢) introduced an additional correspondence measure - edge extent.

To implement these enhancements required substantial redesign of the system, and redesign cycles
with the Marimont process. Chosing useable data also presented difficulties, as the only imagery
available was not of the correct geometry (see below). The two image pairs initially chosen (the
Sacramento apartment complex and a section of some imagery of Moffett Field) proved, on closer
examination, to require quite complex transformation, and could not be easily adjusted for epipolar
processing. Obtaining useable data then tied the progress of this part of the demonstration to the
progress of developing an image registration system.

In general, to bring imagery data into a properly transformed state could proceed in one of two
ways:
e one could determine the transforms and then modify the imagery,
producing an image pair having collinear epipolar geometry;
or

e one could determine the transforms, and modify the output of an edge
operator process that functions over the original imagery.

The latter is by far the superior approach, as it avoids resampling the image. This approach
necessitates incorporating the transform computation into the stereo system, to follow edge finding
and precede edge matching.

The second part of the stereo system's analysis is an intensity correlation process. This operates
along epipolar lines as well, and clearly requires intensity information to be accessable along
epipolar lines. One solution to this would be to take the original image pair and have the correlator
rotate and change shape, size, and orientation as it moves around the image; this is an awkward and
probably unnecessary complication. An alternative would be to access the transformed images,
sampled as accurately as possible, and do the correlation in the rectangular space defined by
collinear cpipolar lines. The argument froin edge accuracy indicated that transforming cdges
rather then resampling the image was the way to go; this argument from intensity correlation
suggests that the resampled image can te us il




—-

32

Automated Mapping §5.4

Another implementation detail supported this use of both transformed edges and transformed
imagery: it was found that the intensity information available from the Marimont process had
too small a basis for useful correlation, and in fact, for transformed edges, had little relevance
for the matching (it being measured not along epipolar lines). The transformed image had to
be referenced again by the system to obtain more significant intensity estimates oriented along
epipolar lines, and working with the image in epipolar space facilitated this.

The philosophy of the stereo matching process here had been to use edge analysis for, among
other things, its higher accuracy, and to use intensity analysis for the continuity it provides. To
be consistent with this, we wanted to have the highest possible accuracy for edges in epipolar
space, and if sacrifice be needed for simplicity, to do it where it least degraded the analysis -
in the intensity correlation. It is clear that transformed edges give higher accuracy than edges
from transformed images (detectability might not change much, but localization is significantly
reduced); and important simplifications could be obtained for little loss by doing the intensity
correlatior, over the resampled image pair. This meant changes in our plans for the registration
system: it had to produce not just transform information, but transformed images as well. Both
forms are made available as output from the registration program described in section 4, and
the cnhanced Baker system uses them both. (However, the original edge finder of the stereo
system has not been modified to use the transform information, and must work (at present) on
the transformed images - with the limitations that brings.)

5.4 The Marimont Edge Operator

The Marimont edge operator has greater detection and reliability than the original Baker edge
operator, and similar localization; earlier examples of its processing convinced us that its output
would improve the quality of our stereo reconstruction. Its ability to track along zero signal
areas in following zero-crossing edges leads to more coherent image descriptions. [Marimont 1982)
provides details of the operator’s functioning. Roughly, it works by convolving an 1n X m lateral
inhibition function of n X n central window with an image. Zero crossings in this resultant image
then indicate edges, and the edge position is determined by interpolating over the lateral inhibition
surface. Section 7 details the content and format of the edge files produced by this process.

A few unanticipated problems became apparent once work with the edges was begun. Ore point,
noted above, was that the intensity information stored at an edge (its left and right boundary
values) had quite small support (a single pixel). This is in contrast with the original operator which
interpolated for these values in an area 3 pixels wide and removed one pixel from the determined
edge position. Anotuer problem was that the edge connectivity produced by the Marimont system
can be misleading, as figure 5-3 shows. Intensity significance was improved by sampling along
epipolar lines in the transformed images. The connectivity problemn has not been !ooked at yet.




Automated Mapping §5.4 S8

Good connectivity is inherently difficult to achieve with zero crossing operators. Refinements to
the process are being considered.

N~

N~

Image
Figure 5-3

The introduction of edge extent as a parameter in the dynamic programming solution was an
obvious fallout from using the Marimont edges. Edges are output by that process as strings, with
2-connectedness. The maximum and minimum of some string, in transform space, is a measure
of 1ts {epipolar) extent. Prior to the use of this information the only way that global continuity
entered the analysis was through a consistency enforcement relaxation process which ensured that
edpes connected in one view were interpreted as continuous in 3-space; all matching measures
were guite Jocal. With the modified approach, the correspondence measure is a function of (among
other, more statistically based parameters) the ratio of edge extents. In particular, the likelihood
of edge element a in the left image maiching edge element b in the right image depends on the
product of the ratios of the two upper extents (up from the edge elements) and the two lower
extents {down from the two edge clements).

When image testing began with all of the above accomplished, another proablem became apparent:
the stereo systemn, bound into a machine architecture with a maximum of 256K words of memory,
and always tightly wedged anyway, had grown with these changes to the point that only small
portions of images could be worked on at once. Thus came to exist a windowing mechanism within
the edge indina/loading and sterco matching processes.




34

Automated Mapping §5.5

5.5 Test Imagery

Our testing has been progressing on several sets of imagery: a synthetic image pair from Control
Data Corporation, an aerial scene from the Engineering Topographic Laboratory, and a building
scene of Sacramento. The latter imagery is the most relevant to the current postdoctoral contract,
and we will be demonstrating the mapping system on this data. This imagery may be secn in
figures 4-6 and 4-8.




e ay

Bitpad §6.1.8 85

6: Bitpad Instructions

6.1 Instructions for the Digitizing Tablet

.1.1 — Introductio

The bitpad program is written in PASCAL to be run on a DEC KL-10 processor under WAITS
at the Computer Science Department of Stanford University. It has an assembly code driver to
handle input from the tablet over a normal RS-232 port (listing included also), and requires a
graphics package available locally. Replacing this package for an intended use away from SAIL
WAITS should be quite straightforward.

Locally, the bitpad may be run by typing DO TAB[S,HIIB]. Figure 6 shows the digitizing tablet
in use.

The initial preamble of questions deals with graphics options and line characteristics. You will
usually want some sort of graphies output, so answer yes to the first question (“Want graphics
output (y/n)?:”). Graphics choices are DD or GOD (for later display). Say y to either or both of the
questions about this. DD graphics go the Data Disc display while for viewing while you construct
an edge file, while GOD graphics are for later Graphics Output Device device independent display.
If you want little boxes drawn around the endpoints of lines, then asnwer y to (“Want boxes draw
around vertices {y/n)?"). Box stze refers to the size of the box to be drawn around vertices. Small
is better for entry, large makes it easier to distinguish vertices from line nodes if you are trying
to do deletions.

On the first digitizing pass over an image you will start directly from the bitpad; later sessions will
involve adding to or editing an existing edge file. To cnter an old file (or several old files), say Y
to the question {“Want to read in a file (y/n)?:"). This reads it in and displays it. For the moment
there's a problem with reading strings into PASCAL, so it tries to read NEW.VRT[S,HHB]. If
this file doesn’t exist, it will give you the chance to enter another filename.. don’t panic, just type
in the new name.

When that file has been read iu and displayed, it lets you choose another (ad infinitum). End with
an answer of N {for NO) to the above question.

6.1.2 — Setting screen coordinat.s

Whether you've read in a file, or not, you now sct up the bitpad to enter data. It asks for the
TTYline of the tablet (50 is the current line number of the bitpad plug). You then define the
screcn area on the bitpad: select the four corners with the crosshairs (lower left, upper left, upper
right, lower right) with any button, and confirtn your selection by pushing button ‘2’ (‘8’ says no,
try for four more points).




Bitpad §6.1.4

6.1.3 - Adding segments and vertices

A ‘segment’ is made up of a start vertex, any number (even 0) of intermediate points, and an end
vertex. Vertices may belong to any number of ‘segments’. Adding vertices/points/segments is as
follows:

Button: ‘1’ defines a new vertex at the current crosshairs position, either starting a segment with
it, or ending one there. ‘2’ locates the nearest vertex (created by ‘1’), and begins or ends a segment
there. ‘4’ says add this point to the current segment list. ‘8’ is a break. 1t lilts the pen. If it is
followed by a ‘1’ or ‘2, then that is all it does. If followed by a ‘4’, it puts you in the delete cycle.
If followed by another ‘8', you exit everything.

6.1.4 — Editing segments

You may enter the editor to delete segments at any point. You do this by keying ‘8’ then ‘4’ in
the above entry loop.

To delcte segments, first choose a vertex attached to the segment with ‘1’ button. Then select
either the other vertex (if there is no ambiguity) with a ‘1’, or a point scmewhere on the segment
with a ‘4’. You then see it erased on the screen, and you push ‘2’ to confirm that that’s the one
you want deleted, or ‘8' to say that its not the one you want deleted. Leave the delete cycle by
keying ‘8'.

If you wish to add more to the file, run it again, and this time read in the VRT file produced on
this previous pass.

At the moment, the GOD file is the sum of everything drawn on the screen during the run. To
get just the current description, you have to pass the file once more through the program; making
no changes, just reading it in and writing it out. Because of this, I recommend NOT producing a

GOD file on the 1t through n — 1* creation passes, saving it for the last run, when nothing will
be altered.




The Digitizing Tablet
Figure 6-1

Bitpad §6.1.4

§7

i A e b,




Edge Format §7.2

7: Marimont Edge File Format
This section describes the format of the edge files created by the Marimont edge process.
7.1 Header

The file is binary, and begins with an 128-word header, followed by a list of linked edge iists
(ledgels); that is, after the header, there are a number of items called ledgels, each of which is a
list of edges.

The format of the header is as follows:
word interpretation

unused; ignore

unused; ignore

bits per pixel in input picture
bias of laterally inhibited picture
“nil-strength” flag

“end-of-list” flag

first row of picture window

first col of picture window

X 3O U e W = O

fast row of picture window

)
©

last col of picture window

o

1 if contours of positive regions, -1 if those of negative regions.

—
—

format number of edge file (format 3 currently);
12-127 unused; ignore

7.2 Ledgels

Next come one or more ledgels, followed by a word containing the end of list flag (word § of the

. header above). Each ledgel has a two word header, a list of one or more edges, and a word after
the last edge containing the end of list flag. Note that this word flags the ends of two kinds of
list: the list of ledgels, and the list of edges that each ledgel contains.

Each ledgel has the followiag fo:iuat:
word interpretation

0 1 if the ledgel is closed, i.e. the last edge is linked

1 (conceptually) to the first, else 0.
7 1 number of lefi turns less the number of right turns in the ledgel, as one
traverses the ledgel from head to tail.
2 beginning of this ledgel’s list of edges




Edge Format §7.8 39

[one or more edges]

last end-of-list flag
7.8 Edgels

Each ledgel has a list of one or more edges. There are two kinds of edges, corresponding to
“significant” and “insignificant” zero crossings in the laterally inhibited image. A significant zero
crossing is a transition of the laterally inhibited signal from positive to negative. An insignificant
zero crossing is a transition of the laterally inhibited signal from positive or negative (depending
on the sign of the region whose encircling contours are being detected, see word 10 of the header
above) to zero, and as such does not correspond to a likely edge in the original image. Their
exclusion from linked edge lists, however, scems to destroy much useful connectivity. So, we
include them as “links” and assume that one between two significant zero crossings is not a
significant break in the edge. But at insignificant zero crossings we do not estimate the strength
of the edge or image intensitics to either side as we do for significant zero crossings. Since less
information is thus associated with insignificant zero crossings, we use two edge formats to save
space.

The format for an edge is as follows:
word interpretation

0 interpolated row coordinate of edge point (floating-point)

1 interpolated column coordinate of edge point (floating-point)

2 integer equal to 0 if edge is horizontal, 1 if vertical

3 two possible interpretations: if when interpreted as an integer, it
equals the nil-strength flag, then this is an insignificant edge point,
the edge strength is undefined, and this is the last field in the edge.
Otherwise, this edge is significant, this field should be interpreted as
a floating-point estimate of the edge strength, and the next two words
are fields belonging to this edge. all edge files as of this writing were
created by encircling positive regions (see word 10 of the header), and
in that case the edge strength is always positive, and the brighter
side of the edge is towards the left as one moves from the head of
the ledgel to the tail.

4 (significant edges only!) estimate of original image intensity to the left

5 (significant edges only!) estimate of original image intensity to the right

L ——— ———— s o L e  ——




R A

40
Edge Format §7.4

7.4 Clarifications

The edge location coordinates are in picture coordinates, i.e. with respect to the original picture,
NOT w.r.t. the window in which they were detected. Integral locations correspond to pixel
centers, not boundaries, and the topmost, leftmost pixel center is taken to be (0, 0), which means
that an m X n picture has its upper left corner at (—0.5, —0.5), and its lower right hand corner
at (m — 0.5,n — 0.5) (since the indices of the last row, col are (m — 1,n — 1}).

For the most part, edges are detected between horizontally or vertically adjacent pixels, which
is why there are only two possible orientations for edges. An edge is detected between two such
adjacent pixels if the laterally inhibited signal is positive at one and negative at the other. The
edge location is estimated by the linearly interpolated zero crossing between these two values.
Edge strength is the difference between laterally inhibited intensities one pixel to either side of
estimated zero crossing (in the directions normal to that of the zero crossing); linear interpolation
is used to estimatc each of these intensities, since the points at which they’re measured usually
fall between pixels. The strength is scaled down to correspond to the difference between adjacent
pixels (i.e. the strength measure is laterally inhibited contrast per pixel unit measure). Image
intensities are cstimated at these same points, i.e. one pixel to either side of the interpolated zero
crossing, in an analogous way, by linearly interpolating between each pair of image intensities.
However, both image intensities are retained.

The reason for the “for the most part” in the first line of the paragraph above is that “extended”
zero crossings are detected in the current implementation. An extended zero crossing is three
adjoining pixels in a row or column with one end pixel positive, one end pixel negative, and the
middle pixel zero (values refer to the laterally inhibited signal). The estimates of edge location
and strength and left and right image intensities are made just as in the above: the location of the
edge is an interpolated zero-crossing, the edge strength is the (scaled) difference in (interpolated)
laterally inhibited pixel values one pixel to either side of the estimated location, and the left and
right image intensities arc interpolated image intensities one pixel to either side of the estimated

location.




AN Y I Ty Wimanaan

Conclusions §8.2 41

8: Conclusions

8.1 Summary

A principal research interest of our group is in developing a rule-based advanced automated stereo
mapping system to function within ACRONYM [Brooks 1981]. Current mapping techniques ignore
much of the information available from inference on single views of a scene. This information
can be useful for three-dimensional surface interpretation, and also provides extra parameters
for stereo matching (i.e. surface orientation, occlusion cues). Qur research effort is directed at
establishing such monocular inference rules in a rule-base for stereo mapping.

In deriving these rules, we perform analysis of both hand extracted and automatically produced
edge descriptions. A facility has been developed under the current postdoctoral contract for
this manual edge extraction from hardcopy imagery. We have studied rule synthesis for several
cases, including that of orthogonal trihedral vertices - features that dominate cultural scenes.
This research is very promising, and has shown the utility of the rule-based approach to surface
inference from monocular information. We will be continuing our research in rule synthesis under
other funding.

Camera solving provides powerful constraint on the correspondence problem in stereo matching.
We have developed a facility under this contract for interactively registering images, determining
the parameters for transforming them (or their edge descriptions) into collinear epipolar space,
and performing the actual image transformation. This determination is crucial to a mapping
process. Incorporating an automated module to provide data for the camera solving is a very
important next step.

We have experimented with an existing stereo mapping process, enhancing its flexibility with
respect to image format and with respect to edge operator format, and have been preparing
example outputs of its processing on new imagery. Our intent with this effort has been to show
the capabilities of a local matehing process and to assess its applicability to the planned rule-based
system.

“.2 Demonstration

We will be demonstrating the following for RADC later in May:

a) an interactive digitizing test facility;
b) the use of image edge descriptions produced using this facility and fromn
an automated process [Marimont 1982] in synthesizing rules for stereo

matching;

c) eramination of Orthogonal Trihedral Vertex (OTV) inference rules;

s O LA A, [ 0 AT o7t b D R 7 e it <t ST




Conclusions §8.2

oy

d) development of a system for registration of image pairs;
e) analysis of stereo imagery with an automated stereo process.

Our demonstration will also present related
of this and other vision research,

equipment and system facilities that we use in support




Drgitizing Program

- 9: Digitizing Program
See sections 2 and 6 for documentation on using this program.

{3$0+}{$H:20000})
Program Tablet(tty . vertfile);

CONST
CHOP=100000;
PI = 3.14159265;
DDX = 432.0: DDY = 432.0;: GDD = 512.0;
1fx = 40.0;
maxdifference=0.05: { one twentieth of screen away }

{ to hold the lines associated with a vertex. incoming lines are negative. )}
TYPE
LINESPTR=*1inestype;
Tinestype=record
line:integer;
nextline:linesptr;
end;

{ to hold the vertices with their associated coordinates and lines }

, VERTLISTPTR=tvertlist;

4 vertlist=record

N | vertex:integer;

I x,y:real;

b header:1inesptr;

nextvert:vertliistptr;
end;

< { to hold the points associated with a line }
‘ POINTPTR=tpoint:
point=record
Xp.yp:real;
nextpt:pointptr
end;

- { to hold the lines with their associated vertices and points )}
LINELISTPTR=t1inelist;
linelisterecord
linenum,initvert, finalvert:integer;
header:pointptr;
nextline:1inalistote
end;

TEMPARRAY=array[1..20] of integer;
STRNG=packed array[1:30] of chur:

INTFILE« FILE OF INTEGER; { For graphics )

ki vVar savex,savey, X1,Y1,X2,Y2,X3,Y3, X4, Y4 MINX ,MINY:ren1;

P signold.oldvert, linenum,pich,picw,vertcount,linecount,verta,vertb: integer;
ox,dy.gx,.gy.1stx,1sty, ttylire,boxsize:integer; { for drawing (x,y) }
theta REALX,REALY:real;

B81,82.answer . dumchar:char;
TABLETIO, junp.finished.drgrarh LAST4 BOXFLAG,boxgod,
toconfirn, rocdeznfirm DRONNTY GODIONFY, T, r2adin, 39t :C29Y fan;

43

e e P ——.



44

vertfile,infile:text;
filename:strng;
vl startvert, tailvert,

tptr,vptr:vertlistptr; { vertex ltst }
newlptr,lptr,1,

scanptr,istscanptr:1inesptr; { Yines of vertex 1ist }
11,.startline, tailline,

sptr.savsptr. istsptr:linelistptr; { Vine 1ist )}
firstp,p.oldp,pptr:pointptr: { points in line list }

godfile: INTFILE; { GOD files for plotting )
SWITCH: RECORD { Little hack for putting reals into integers }
CASE FOO:800LEAN OF { for 600 files }
TRUE: (I:INTEGER):
FALSE: (R:REAL)

END:
{ external DD graphics procedures in GPAS.REL[TST,AAM] }
procedure ginit: ex.ern; { init }
procedure scrset: extern; { clear screen }
procedure width(w:integer); extern; { no-op )}
procedure drken: extern: { make line dark }
procedure titen; extern: { make line iight }
procedure inven; extern; { swap above }
procedure move(x.y:integer); extern; { ins/isible Yine to x.y }
procedure draw(x,.y:integer); extern; { visible 1ine to x,y }
procedure dpyup; extern: { draw to screen }

procedure inchar(var key,ctlkey.metakey:integer); extern:
procedure bitini(line:integer): extern; { init tty for input }

procedure bitpad(var resull,resul2,resuld:integer); extern; { tablet 1input }
function ttytab(var :sull,resul2,resul3:integer):boolean; extern; {tablet or tty test )}
procedure ppset: extern: { set page printer }

procedure ppdone; extern; { release page printer )}

{ READTABLET DISTANCE INITTEMPARRAY GRAPHICS (DD AND GOD) )}

Procedure READTABLET(var B:char;var X,Y:real):
var T, IX IY:integer ;TA:real;

{ This procedure reads in data from either the terminal or the tablet.
The data consists of which button was pressed, and the coordinates
of the point at which it was pressed. The boolean TABLETIO indicates
whether the procedure is reading from the tablet or from the terminal. }

Begin
if TABLETIO than
begtn
bitpad(T.IX.IY):
IF TTYTAB(T.IX.IY) THEN WRITELN(TTY, 'tty activity'):}
writeln(tty, t:0," ", ix:0," *,iy:0); }
B:=chr(48+T) X:=IX;V:=]Y;
end
elise
begin
readIn(tty):
read(tty,B) read(tty.X);:read(tty.Y):
end;

LY

End;

PROCEDURE GETCOORDS;
Begin
READTABLET(31,X1,Y?):




REALX := (X1-MINX)/picw; REALY := (Y1-MINY)/pich;
IF REALX < 0.0 THEN REALX:=0.0
ELSE IF REALX > 1.0 THEN REALX:=1.0;
IF REALY < 0.0 THEN REALY:=0.0
ELSE IF REALY > 1.0 THEN REALY:=1.0;
{ writein(tty,'81=' 81, °, Xi=' ,X1:0,'(°'.REALX:5:3,'), Y1=", Y¥1:0, (', REALY:5:3,')'): }
End;

FUNCTION ASK(N:integer): BOOLEAN;
VAR goodans:BOOLEAN;
Begin { ASK }
goodans:=FALSE;
Repeat

case N of
1:WRITE(TTY, ‘Want Tablet I0 (y/n)?:');
2:WRITE(TTY, 'Want graphics output (y/n)?:');
3:WRITE(TTY.® to the DD (y/n)?:');
4:WRITE(TTY,® to the GOOFILE (y/n)?:');
5:WRITE(YTY, 'Want to read in a file (y/n)?:');
6:WRITE(TTY, 'Happy with this frame (y/n)?:'):
T7:WRITE(YTY, 'Want to DELETE segments (y/n)?:'):
8:WRITE(TTY, Do another deletion (y/n)?:'):
9:WRITE(YTY,'Is this the line to be deleted (y/n)?:'):
10:WRITE(TTY,' Want boxes draw around vertices (y/n)?7:');
11:WRITE(YTY,® Want frame drawn in GOD file (y/n)?:°):
12:WRITE(TTY,’ Want to add to file from TABLET (y/n)?:');:

End;

readin{tty);read(tty.answer); if(answer = 'y') or (answer = 'Y') then

Begin ASK:=TRUE;goodans:=TRUE; End
else Begin ASK:=FALSE:goodans:=TRUE; End:
UNTIL goodans;

End: { ASK }
Function DISTANCE(X1, Y1, X2, Y2: Real):Real; {Finds the distance bet. 2 pts. }
begin
distance:= Sgrt (Sqr (X2 - X1) + Sqgr (Y2 - Y1)):
end;

Procedure INITTEMPARRAY(var a:temparray);
var i:integer;
vegin
for i:= 1 to 20 do
afi1}:=0;
end;

Function MAX(a.b:integer): INTEGER;
Begin
IF A > B THEN MAX := A ELSE MAX := B;
Eng;

{ Routines to make GOD files }

PROCEDURE OUT(N:INTEGER);
BEGIN
GODFILE* := N: PUT(GODFILE)
END:

PROCEDURE OUTREAL(V:REAL):
BEGIN
SWITCH.R := V;
QUT(SWITCH.I)

END;
PROCEOURE PLOTLINE(X1,Y1,X2,YZ:REAL):
BEGIN
ouT(7): { LInE )}

OUTREAL(X1): OUTRI™C(Y1);

45




46

OUTREAL(X2); OUTREAL(Y2):
0uT(0) { THICK }
END;

{ Procedures to disptay graphics on the DD terminal. }

Procedure BOX;
Begin { BOX }
IF BOXFLAG THEN
Begin
IF DDGRAFX THEN

Begin
MOVE(dx-boxsize.dy-boxsize) ;DRAW(dx-boxsize,dy+boxsize):
DRAW(dx+boxsize.dy+boxsize) :Draw(dx+boxsize.dy-boxsize);
Draw{dx-boxsize,dy-boxsize) MOVE(dx,dy):
If NOT(READIN) THEN DPYUP;

End;

IF GODGRAFX THEN

8egin
PLOTLINE(GX-boxsize.GY-boxsize,GX-boxsize.GY+boxsize):
PLOTLINE(GX-boxsize.GY+boxsize,GX+boxsize,GY+boxsize);
PLOTLINE(GX+boxsi1ze .GY+boxsize,GX+boxsize,GY-boxsize);
PLOTLINE(GX+boxsize,.GY-boxsize,GX-boxsize, GY-boxsize):

End;

End;
End; { /0X }

procedure DARKDRAW;
Begin
IF GODGRAFX THEN
Begin
gx:=round(realx*GDD):
gy:= round(realy*GDD);
Eng;
If DDGRAFX THEN
Begin
dx := round(realx*DDX+1fx);
dy := round((1.0-realy)*0DY);
MOVE (dx,dy);
IF NOT(READIN) THEN DPYUP;
End; { move if DD. nothing if GOD }
End;

procedure LIGHTDRAW;
Bagin
1F GODGRAFX THEN
Bagin
1stx:=gx; 1sty:=gy:
gx:=round(realx*GDD);
gy:* round{realy®*GDD);
PLOTLINE(1stx. sty.gx.gy):
End;
IF DDGRAFX THE:
Bagin
dx := round(realx*DDX+1fx);
dy := round((1.0-realy)*DDY);
DRAW(dx ,dy):
IF NOT(READIN) THEN DPYUP;
End;
End;

PROCEDURE FR*.""LR/Y;
Begin { FRAWC }
realx:=0.0:realy:~0.0;0AIKOR.YW; { DRIAW FRAME AROUND SCREEN )
realx:=0.0:realy:=1.0:LIGHTDR ¥;
realx:=1.0:realy:=1.0;LIGHTOR."Y;
realx:=1.0;redly:«0.0;LICHTCA" I
~8312:=0.Cor2,1,:70.C,0.T70 70




47

End;{ FRAME }

PROCEDURE GODINI:

Begin { GODINI }
REWRITE(GODFILE. 'TAB.GOD');
0uT(97): { DDINIT }
ouT(1): { SCREEN }
OUTREAL(0.0);
OUTREAL(0.0);
OUTREAL(GDD);
OUTREAL(GDO);
oUT(4): { LITEN }
BOXGOD: =ASK(11);
If BOXGOD THEN FRAMEDRAW:

End: { GODINI }

PROCEDURE GODFINI;
VAR I:integer:
Begin { DPYUP and KILJOB }
ouUT(17): { OPYUP }
ouT(-1):
ouT(-1):
FOR I := 1 TO 32 DO OUT(0) { KILJOB }
End: { OPYUP and KILJOB }

PROCEDURE DDINI:

Begin { DDINI }
PPSET; { set up small page printer for text }
ginit;
scrset;
DRKEN ; { dark here so's works like SUN }
If not{GODGRAFX) THEN FRAMEDRAW; { frame if just DD }

End: { DDINI }

PRCCEDURE DOFINI;
Begin { page printer clear )}
PPDCONE ;
End: { page printer clear }

{ INITUINELIST, INITVERTLIST, ENTERLINE, ENTERVERTEX, ADDLINEPTR }
Procedure INITLINELIST;
{thys initializes the 1ist of lines)}
Begin
new(11):
11+ nextline:=nil;
11+ .header:=nil;
startline:=11;
tailline:=13;
End, (INITLINELIST)

Procedure INITVERTLIST:
{thas wnitralizes the 1ist of vertices)
Begin :
new(vl); i
vit . nextvert:=nil;
vi+ header:=nil;
startvert:=vl;
tailvert:.=v1;
Enc: {INITVERTLIST}

Procedure ENVERLI 'F; -
{t%rs puts the line into 14:2145¢)

P g




48

Begin
linecount:=1inecount+1;
tailliner.linenum: =linecount;
taillinetr.intvert:=verta;
taillinet. . finalvert:=vertb:
taillinet. header:=firstp:
firstp:=nil;
new(11);
taillinet.nextline:=11;
tailline:=11;
taillinet nextline:=nil;
End: {ENTERLINE}

Procedure ENTERVERTEX:
{ starts a new vertex }
Begin
tailvertt x:=REALKX;
tarivertt y:=REALY;
vertcount:=vertcount+1l;
. tailvert®. vertex:=vertcount;
R tarlvertt . header:=nil;
] new(vl);
4 tailvert+ . nextvert:evl;
4 tailvert:=vl;
taiivert* . nextvert:=nil;
End: { ENVERVERTEX }

e

Procedure ADDLINEPTR(1ine.vertnum:integer):
{ this adds a line to the linked list of lines associated with a vertex }
Bagin
vi:=startvert:
while vi+ vertex <> vertnum do vl:=v1t. nextvert;
Tptr:=v1* header;
if Yptr = nil then
begin
new(newlptr);
vi®. header:=newlptr;

X end
o else
begin
. while lptrt.nextline <> nil do lptr:«lptrt.nextline;
ks new(newliptr):
1ptrt.nextline:=newliptr;
end;

newlptr+. Jine:=line;
newlptr* . nextline:=nil;
End: {ADDLINEPTR}

Procedure FINDOLOVERTEX(var vptr:vertlistptr;var oldvert:integer:xold,yold:real);

{ This finos the old vertex which is nearast to the point at which B2 was
pressed. If the nearest old vertex is further than maxdifference away, it
tells how far away it is. }

var verinum:integer;
] tpir:vertiistptr:

. Begin
# tptr:=startvert;
votri=startvert:
while (tptr<>tailvert) do
. begin
i if DISTANCE(*ptrt.x . tptrt.y x01d,y0ld)<DISTANCS(vptrs . x, vptrt. .y, x01d,219) 1% :n

oy
T RETEN N




49

vptr:=tptr;
tptr:=tptrt.nextvert;
end:
oldvert:=vptrt.vertex;
if (DISTANCE(vptrr.x,vptrt.y,.xo0ld,yold)>maxdifference) then
writeln(tty, the nearest old vertex is °',DISTANCE(vptrt.x,vptrt.y,xold,yold):4:

2, away'):

End; {FINDOLOVERTEX}

PROCEDURE AIMVERT(vert:integer);:
Begin
tptr:=startvert;
while tptrt.vertex<>vert do
tptr:=tptrt.nextvert;
REALX:=TPTR*.X;REALY:=TPTR*.Y;
End;

FUNCTION FINDOLDPOINT(var retsptr:Tinelistptr;TESTX,TESTY:real): BOOLEAN;
{ This finds the old point which is nearest to the point at which B2 was
pressed. If the nearest o1d point is further than maxdifference away, it
tells how far away it is. }

VAR OLDDIST:REAL:

PROCEDURE SEARCHPOINT(viptr:linesptr;xold.yold:real);
var tstsegnum:integer;:
Begin
tstsegnum:=ABS(viptrt.line); { get linenumber }
sptr:sstartline;
while sptrt.linenum<>tstsegnum do
sptr:=sptrt.nextline;
pptr:=sptr+.header;
WHILE pptr<>NIL DO
Begin
IF DISTANCE(pptr*.xp,pptrt.yp.xold.yoid) < OLODIST THEN
Begin
OLDDIST := DISTANCE(pptrt.xp.pptrt.yp.xold,yold);
savsptr:=sptr;
End:
pptr:=pptrt.nextpt;
End:
End;

Begin

AIMVERT(verta);

savsptr:=nil;

scanptr:=tptrt. header;

OLODIST:=1.0;

REPEAT
SEARCHPOINT(scanptr TESTX,TESTY);
scanptr:=scarptr*.nextline;

UNTIL scanptr = nid;
IF OLDDIST > maxdifference THEN

Begin
{ WRITELN(TTY. 'No such point on 8 line from that vertex'); }
FINDOLDPOINT: =FALSE;
Erd
ELSE
Jygin

verta:=savsptr+. initvery;
verth:=savsptrt. finalvare,
reLsptr:ssavsptr; { copy bsck for raturn }
FINDOLC?O. f:sTRUE;
End:
End; {FI..CCL.70I''T})

PRCZEDDNE 10 ™ [UEST(s2 atr:Yd4noVdziasrzorocasury CU2PNIC: coit:hooloan);

i
|
|




vy

50

Begin
verta:ssegptrt.initvert;
vertb-=segptrt.finalvert;
GRAPHIC;
AIMVERT(verta): DARKDRAW; { start drawing }
pptr:=segptrt. header ;READIN:=TRUE:
while pptr <> nil DO
Begin
REALX:=pptrt.xp;REALY:=pptr+. yp:
potr:=pptr*.nextpt;
LIGHTODRAW;

End;
AIMVERT(verth):LIGHTDRAW:READIN: «FALSE;
DPYUP;DRKEN; { finishing drawing )}

END;

FUNCTION CHECKOLDVERTEX(var retsptr:linelistptr): BOOLEAN;
Var tstsegnum,checksegnum:integer:
tstvptr:vertlistptr:
scnviptr:linesptr:
TSTT:BOOLEAN;

FUNCTION CHECKVERTSOFLINE: BCOLEAN;

Begin
tstsegnum:=ABS(scanptrt.line): { get linenumber }
scnviptr:=tstvpir® header: { scan vertex line tist }

checksegnum:=-1;
WHILE ((scnvlptr <> NIL)} AND (tstsegnum <> checksegnum))
DO Begin
checksegnum: =ABS(scaviptr*.Yine);
scnvlptr:=scnviptrt.nextline;
End;
[F tstsegnum <> checksegnum THEN
Begin
CHECKVERTSOFLINE : =FALSE
scanptr:=scanptr*.nextline;
Eng
ELSE CHECKVERTSOFLINE:=TRUE;
End;

Begin
retsptr:=nil;
FINDOLOVERTEX{tstvptr . vertb,REALX, REALY);
savsptr:=nil; { tptr and tstvptr }
scanptr:=tptr*. header;
TSTT:=FALSE;
WHILE ((scanptr <> NIL) AND NOT(TSTT))
DO TSTT:=CHECKVERTSOFLINE;
IF TSTT THEN
Begin
sptr:=startiine;
while sptr*. linenum<>tstsegnum do
sptr:=sptr* nextline;
retuptr.ssptr;
CHECKOLDOVERTEX := TRUE;
End
ELSE CHECKOLDVERTEX := FALSE
End: { CHECKOLOVERTEX }

PROCEDURE DELETESEG(segptr:1inelistptr);

PROCEDURE DELSFROMV(vertnum:intsjer):
Begin
ATMVERT(vertnum);
scanptr:=tptrt. header;
Istscanptr:=tptr+ hedder;
while ABS(scanptrt.line) <> liaum C9
Bagin
Istscznptringzonzirg




scanptr:=scanptrt.nextline;
End;
IF scanptr=tptrt_header then tptit.header:=scanptrt.nextline
ELSE lstscanptrt.nextline:=scanptrt.nextline;
End;

Begin
verta:=segptrt. initvert;
vertb:=segptrt_ finalvert;
Tinenum:=segptr+.1inenum;
DELSFROMV(verta); { removeline from start vertex list)
DELSFROMV(vertb); { removeiine from end vertex 1ist)
sptr:=startline;
Istsptr:=nil;
while sptr <> segptr DO
Begin
Istsptr:=sptr;
sptr:=sptrt.nextliine;
End:
If Istsptr=ni} THEN startline:=sptrt.nextline
ELSE 1stsptrt.nextiine:=sptrt.nextline;
End; { DELETESEG }

PROCEDURE DELETEPHASE;
var segptr:linelistptr;

PROCEDURE SETDELETION;

Begin
FINDOLDVERTEX(tptr, verta,REALX,REALY);
GETCOORDS ; { select 1ine or vertex point }
T:=FALSE;
CASE B1 of
'1': T:= CHECKOLDVERTEX(segptr):
'4': T:= FINDOLDPOINT(segptr ,REALX REALY);
others: Writeln(tty.'1l for vertex; 4 for point')
End:
IF T THEN
Begin

REMOVETESY (segptr ,LITEN,TRUE);
NEEDCONF IRM: =TRUE ;
writeln(tty, '<B=2> for confirm, <B=8> for reject deletion'):
End
ELSE writeln(TTY, Couldn''t delete 1ine (from vertex ‘,verta:0,')'):
End: { SETDELETION )}

PROCEDURE ERRMSG;
Begin
writein(TTY, 'B=1 or 4 for deletion, B=2 for confirm, B=8 for reject/quit’);
€nd;

Begin { Deletes segments }
PPSET; N
writein(TTY, 'Select vertex <B=1>, then vertex <B=1> or point on 1ine <B=4>; <B=8> guits.'):
write(TTY,' Once selected, <B=2> confirms deletion, <B=8> cancels 1t.');
FINISHED: =FALSE ;NEEDCONFIRM: =FALSE;
REPEAT
GETCOORDS ; { select vertex }
CASE B1 OF
*1': IF NOT(NEEOCONFIRM) THEN SETDELETION
ELSE ERRMSG: { CHOSE THE LINE TO DELETE )}
*2': IF NEEDCONFIRM THEN { THIS IS CONFIRMATION }
Begin
ODELETESEG(segptr) NEEDCONFIRM:=FALSE;
writeln(tty, For deletions B=1 then 1 or 4; B=8 {s quit');
End
ELSE ERRMSG;
*8': IF NEEDCONFIRM THEN { THIS IS REJECTING THE DELETIOM }
Begtin
gEMOVETEST(:e:ptr.DRKEN.FALSE):NEEDCOHFIRH:-FLLSS:

51




. 52
. writein(tty, 'For deletions Be1 then 1 or 4; B=8 is quit’):
3 En¢
. ELSE Finished:=true;
! OTHERS: ERRMSG
\ END; { OF CASE } g

UNTIL FINISHED;
T:=TRUE:FINISHED: =FALSE ; LAST4:=FALSE;
writeln(tty. 'Returning to entry mode');

End;{ Deletes segments )

PROCEDURE LASTDELETE; { Ylast chance at deleting } g
Begin
PPSET;
3 Writeln(TTY,"DELETE? <B=2> for YES, <B+=8> for NO');
E- T:=FALSE;
3 REPEAT
READTABLET(B1, X4, Y4);
CASE B1 of
*2': DELETEPHASE; { do deletions }
*8': T:=sTRUE:
others: writeln(TTY,'<B=2> for deletions or <B=8> for none')
End;
jed UNTIL T;
’ Engd;

Procedure STARTOLOVERTEX;

. : { This procedure finds an o1d vertex, enters the number of the incoming
% Tine in the linked list of lines associated with it, enters the number
; ' of the old vertex in the line buffer, and calls ENTERLINE to move the
b4 ! contents of the tuffer into the linked 1ist of lines. It then draws a
P ! line to the old vertex. }

var linenum,oldvert:integer;

Begin
toconfirm:=false;LASTA4:=FALSE;
if jump then

begin { jump }
FINDOLDOVERTEX(vptr,oldvert REALX ,REALY):
REALX:=vptrt x:REALY:=vptr+t.y;
verta:=oldvert:
jump:=false;
if ddgraph then DARKDRAW;

end { jump }

- else

begin { no jump }
FINDOLDVERTEX(vptr oldvert, REALX,REALY);
vertb:=olcdvart;
REALX:=vptrt.x;REALY:svptrt.y;
ENTERLINE;
ADOLINEPTR(1inecount,verta):
ADDLINEPTR(-)inecount,vertd):
1f ddgraph then LIGHTDRAW;
verta:=oldvert;

end: { no jump }

End;: {STARVOLD.ZRTIK}

g

Procedure STAR,. [ E£.:73X;

. { Tots proz~y -2 ers tos 1 nzy 29ty 40 4% linksd 1ist of victic.s




which contains the number and coordinates of the vertex, ard .Jdds

\ the vertex number to the line buffer. If the vertex is at the end

: of the line (if B4 has besen previously pressed to add points to that
line), it calls ENTERLINE to add the contents of the line buffer

to the tinked Tist of lines. It also draws a line to the vertex. }

var linenum:integer:

Begin: {STARTNEWVERTEX)

toconfirm:=false;LAST4:=FALSE;
it jump then
begin { jump }
ENTERVERTEX;
verta:=vertcount;
jump:=false;
if ddgraph then Begin DARKDRAW;BOX End;
end { jump }
else
begin { no jump }
ENTERVERTEX;
vertb:=vertcount;
ENTERLINE:
ADDLINEPTR(Yinecount,verta);
ADOLINEPTR(-1inecount,vertb):
if ddgraph then Begin LIGHTDRAW;:BOX End;
verta:=vertcount;
end; { no jump }
Eng; {STARTNEWVERTEX}

i Procedure NEWPOINT;
. { This procedure adds the coordinates of a new point to the linkod
1ist of points which are associated with a vertex. }
Begin
If toconfirm then DELETEPHASE
ELSE
IF NOT(JUMP) THEN
Begin
if firstp=nil then
begin
new(p):
firstp:=p;
oldp:=p
end
- elses begin
new(p);
oldpt.nextpt:=p;
oldp:=p;
end;
pt.xp:=REALX;pt.yp:=REALY;
pt.nextpt:=nil;
if ddgraph then LIGHTORAY;
LAST4:=TRUE
End
ELSE WRITELN(TTY, 'Put the pen down first'):
toconfirm:=false:
End; (NEWPOINT)

{ UTILITIES }

FUNCTION READINFILE: D L =2N;
VAR baseline,.baszcvort, t,accvsrds, . op,oemtincs, non, 003 00, QUAT: 1UTEGER;,

53




y

54

TVAL:BOOLEAN;
tptr:vertiistptr;

Procedure READVERTS;
{ This procedure reads the VERTICES from the vertfile }

Begin
baseline:=linecount basevert:~vertcount;
read(infile,dumchar,dumchar, dumchar):
read({infile,numverts); { get past 'V =' for N }
readin(infile);
FOR I:= 1 to numverts DO
Begin
read(infile,vnum,dumchar,dumchar ,REALX,dumchar ,REALY ,dumchar,dumchar);
{ number, coorda, coordb }
ENTERVERTEX;
while not(eoln(infile)) DO
Begin
read(infile.01dline);
IF oldline < 0 then signold:=-1 else signold:=1;
oldline:=ABS(cldline); oldline:=(0ld)ine+baseline)*signoid:
ADDLINEPTR(01d)ine,vnum+basavert):
End;
readin(infile);
End;
vertcount :=» basevert + numverts;
linecouni := baseline;
End: { READVERTS }

Procedure READLINES;
{ This procedure reads the LINES from the infile }

PROCEDURE FINDANDDRAW(vert:integer;procedure FUNC):
Begin
tptr:=startvert;
while tptrt.vertex<>vert do i
tptr:=tptr+.nextvert;
REALX:=TPTR* . X REALY:=TPTR*.Y;
FUNC;BOX;
End;

Begin
readin(infile, dumchar, dumchar, dumchar.numlines): { get past 'V «' for N )
FOR I:= 1 to numiines 00
Begin
read(infile. num,.dumchar dumchar verta,dumchar,vertb,dumchar,dumchar);
. verta:=verta+basevert vertb:=vertbsbasevert;
IF dograph THEN FINDANDORAW(verta, DARKDRAW);
firstp:=nil;
while not(eoln(infile)) DO
Begin
read(infile,dumchar REALX dumchar REALY,dumchar);
NEWPOINT
Eng:
If ddgraph THEN FINDANDORAW(vertd,LIGHTDRAW);
ENTERLINE;
readin(infile);
Ena;
End; (READLINES)

Begin
TVAL:=ASK(E):
1F TVAL THEN
Begin
PPSET;
WRITE(TTY, ‘Filename:'}); )
READLN(TTY . filenane:QUANT:[ 1): )
WRITELN(TTY QUANT:0); }
PESET(4infile, "NEW. VT,

— -




55
readin:=trye;
READVERTS;
READLINES;
If (ddgraph and ddgrafx) THEN DPYUP; ‘
End; !
READINFILE:=TVAL; g
End; { READINFILE )}
Function MAG(X1, Y1, X2, Y2: Real):INTEGER: { Finds the distance bet. 2 pts. }
BEGIN
MAG:» round(Sqrt (Sqr (X2 - X1) + Sqr (Y2 - Y1))):
END;
Function ANGLE (X1, Y1, X2, Y2: Real): Real: { Finds angle theta bet. 2 lines }
VAR X.Y.x1t:resl;
BEGIN
X := X2 - X1;
Y 1= Y2 - Y1
IF abs(X) > abs(y) THEN
xLT := Arctan (Y/X)
ELSE xLT := (PI/2) - Arctan (X/Y);
angle := x1t;
END;
FUNCTION INITTABLET:BOOLEAN; !
Begin ;
Writeln (tty,'Lower-left corner: °): 4

READTABLET(B1, X1. Y1}):
Writeln (tty, 'Top-left corner: ');
READTABLET(B1, X2, Y2):
Writeln {tty, 'Top-right corner: ');
READTABLET(B1, X3, Y3);:
Writeln (tty, 'Lower-right corner: ');
READTABLET(B1, X4, Y4);
{ *nese calculations are dumb }
minx := X1: miny := Y1;
Theta := ((ANGLE(X1, Y1, X2, ¥Y2) - Pi/2.0) + ANGLE(X2, Y2, X3, Y3) +
(ANGLE(X4. Y4, X3, Y3) - Pi/2.0) + ANGLE(X1, Y1, X4, Y4)) /4.0;
pich := MAX(MAG(X1., Y1. X2. Y2),MAG(X4, Y4, X3, Y3)): .
picw = MAX(MAG(X1, Y1, X4, Y4) MAG(X2, Y2, X3, Y3)):
Write(tily. Theta="_theta:5:3,' height=",pich:0,' width=' picw:0);
writeln(tty, ° <B=2> confirms, <B=8> rejects');
READTABLET(B1, X4, Y4);
CASE 81 of
*2': INITTABLET:=TRUE; { make sure happy with this } .
*8': INITTABLETY:=FALSE;
others: writeln(TTY, “2(confirm) or 8(reject)’)
End;
Engd:

PROCEDURE WRITEFILE:
TYPE bigarray=arrey(1..500] of integer;
VAR VTRAN,LTRAN:bigarray;

VCOUNT .LCOUNT: intager;

PROCEDURE BUILDVLTASLE;
Begin
tptr:=start/ort;
VCOUNT:=0:
while (toir<>tailvert) do
3agin
verta:=tptrt.vertex;
IF tptrt.reader <> nil then
Feqin
YCCUNT : =VCIU T+,
VTRAN{verta]:=vCOiuT;
Erd
LT oNTUrIverts])i--t { iy}




tpte:=tptrt.nextvert;
End;
sptr:=sstartiine;
LCOUNT:=0;
while sptr <> tailline do { no nulls in segs.. they’'ve been removed }
Begin
linenum:=sptrt.11inenum;
LCOUNT: =LCOUNT+1;
LTRAN[Tinenum]:=LCOUNT
sptr:=sptrt.nextline;
End;
End;

Begin { WRITE OUT VERTICES AND EDGES }
{ write file with entries:
V = the number of vertices,
<vartex entries> (N of them),
L = number of Tines,
<line entries> (M of them).
BUILDVLTABLE; { make index transforms for vertices and lines }
writeln(tty,'V = ' ,VCOUNT:0,', L = ' ,LCOUNT:0);
{ do Vertices }
writein(vertfile,'V = ' VCOUNT:0,' height = ',pich:0,', width = * picw:0,' (mm)'):
vi:=startvert;
repeat
verta:=VTRAN[v1*.vertex]:
IF verta >0 then write(vertfile,verta:0,":( ", vit.x:0:3,","',vit.y:0:3,%):");
1:=v1t header;
if 1<>nil1 then

repeat
linenum:=1*.1ine;if l1inenum>0 then signold:=1 else signold:=-1;

linenum:=signold®*LTRAN[ABS(1inenum)];
write(vertfile,' ',linanum:0);
1:=1*.nextline;
until 1=nil;
IF verta > 0 then writeln(vertfile);
vl:zavit nextvert;
until vistailvert:
{ do Lines }
writeln(vertfile,'L = ' ,LCOUNT:0);
11:=startline;
repeat
LINENUM:=LTRAN[11*.1inenum];
write(vertfile LINENUM:O,':<' ,VTRAN[11t. initvert]:0,', ' ,VTRAN[11*.finalvert]:0, '>:"');
p:=111.header;
if p<>nil then
repeat
write(vertfile, ' ('.pt.xp:0:3,', .pr.yp:0:3.°)"):
p:=pt.nextpt;
until p=nil;
writeln(vertfily);
1M:=11r.rextlirs;
until 11=tailline;
End: { WRITE VERTICES AND EDGES }

................................................................. mmTeccense-

{MAIN PROGRAM ST-"T3 !'Z- %)

Begin
writein(tty,'Digitizing 7ablet; Button Functions:'):
writeln(tty.’ 1: start & new vertex (either fresh, or as the end of the curreat');

writeln(tty."® arced ssgmant’);
writeln(tty.’ 2: find the nrar2st vertex to this point, and treat it as the end'):

—- . -
s2a7snt ')

writoin(te, .’ (cr ztar*) of currcnt arcze s

o gt . 65 -




57
writeln(tty,' 4: take this point');

& writeln(tty,' B8: 1ift pen;'):
é. writeln(tty," if next is 1 or 2 then CONTINUE drawing'):
!. writeln(tty,"’ if next is 4 then do a DELETION'):
writeln(tty,"’ if next is 8 then QUIT'):
| DDGRAPH: =ASK(2);
p IF DDGRAPH then

BEGIN
DDGRAFX:=ASK(3);
GODGRAFX : =ASK(4):
BOXFLAG:=ASK(10):
IF BOXFLAG THEN
Begin
write(tty,' Box size(1,2):');
readin(tty):read(TTY, boxsize);
End;
IF GODGRAFX THEN GODINI:
If DDGRAFX THEN DDINI;
END;
Rewrite{vertfile):
firstp:=nil;vptr:=nil;vertcount:=0;linecount:=0;
INITLINELIST;INITVERTLIST;
REPEAT T:= READINFILE UNTIL NOT(T):
TABLETIO:=TRUE :DOTAB:=*TRUE;
IF READIN THEN DOTAB:=ASK(12):
IF DOTAB THEN
Begin
write(tty, 'TTYline number:');
readin(tty).reao{tty,ttyline);
bitini(ttyline);
REPEAT T:=INITTABLET UNTIL T; { get corners of image }
PPSET;
writeln(tty, *Ready*');
readin:=false;finished:=false;toconfirm:=false; jump:=true;LAST4:=FALSE;
firstp:=nil;

repeat
GETCOQROS ;
case 81 of
*1" :STARTNEWVERTEX
*2°:STARTOLDVERTEX;
*4' :NEWPOINT;
*8':Begin
IF NOT(LAST4) THEN
Begin
if toconfirm then finished:=true
else Begin
toconfirm:strue,
writeln(tty, '*Pen is UP*');
End;
jump:=true
End
ELSE writeln(tty, 'put the pen down first');
End;
others:Writeln(tty, 'Garbled data')
end;
until finished;
End;
IF DOGRAPH THEN
Begin
IF GODGRAFX THEN GODFINI ELSE IF DDGRASX THE: DCFILI;
Engd;
WRITEFILE:

End. {MAIN)




58

icode to allow PASCAL to get BITPAD data from TTY other then job's TTY
; Macro-10 assemdbly code, with local code for TTY driver
title trace

item==0

$Clen}

$C2==2

$C3==3

scd==4

p==+017

MODE==0 :ASCII
JOBFF==1t0121
chnsts=+0716000000000
ttyskp=10047000400116
PPIOT==10702000000000
DBEEP==10047000400111 ;BEEP UUO DEFN
DPYCLR==40701000000000
INSKIP==+0051540000000
SLEEP==+0047000000031
OPDEF PPSEL[PPIOT 0,)
OPDEF PPACT[PPIOT 1,]
OPDEF DPYPOS[PPIOT 2.}
OPDEF OPYSIZ[PPIOT 3,]
OPDEF PPREL[PPIOT 4.}
OPDEF LEYPOS[PPIOT 6,]

radix 30

entry BITINI .BITPAD PPSET,PPSET2,PPDONE,TTYTAB

BITINI: PCP P.RETAD
MOVEM  SC2,LINE ;LINE PARAMETER PASSED BY VALUE
MOVEI  SC3.t017
BITLOP: HRRZ  SC1,SC3 :GET A CHAN TO TEST
LSH SC1,18+5
OR SC1.[CHNSTS SC2]
XCT 5C1
TRNE  SC2,+0400000 {USED ALREADY?
SOJGE SC3.BITLOP :TRY UNTIL NONE THERE
JUMPL  SC3,NOCHHS
HRRZS  SC3
LSH 5C3.5
HRLIM  SC3,CHAN ;THIS IS THE CHANNEL
MOVE ITEM, [TTYSKP]
I0R ITEM,CHN

MOVEM  ITEM.BITCHK
MOVE  ITEM. LINE

SETZ sC2,
LIRLOP: IDIVI ITEM. 10 ;TREAT AS DECIMAL NUMBER (ALTHOUGH 1T IS OCTAL)
ADDI 5C1,+020
LSHC SC1.-6 ;SIDE IT OVER
JUMPN ITEM,LINLOP ;GO TILL DONE
HLRM SC2.81TDVC+1 :LINE IN SIXBIT
BITOPN: MOVE ITEM,[OPEN BITOVC]
I0R ITEM,CHAN iMAKE OPEN WORD
xcr iTEM

HALY BITOPN

MOVET  SC1,7TIBFS
EXCH  SC1,JOBFF

MOVE ITEM. [T, BUF 2]
10R iTeM, CHWN

xcr iTM

MOVE'  “71, ITFF




59

. MOVE  ITEM,[INPUT]
IOR ITEM,CHAN
. MOVEM  ITEM,INCMD
JRST  @RETAD :DONE INITING TTY LINE

NOCHNS: OUTSTR [ASCIl2/
No channels left.. forget it

/]
POPJ P,
TTYSLP: MOVEL 0.0 SLEEP A JIFFY
SLEEP 0,
TTYTAB: INSKIP O ;has a char been typed? 1
JRST DOBTPD ;NO
SETOM 1(P) ;return TRUE (SO CALLER GETS INPUT FROM TTY)
POPJ P,
DOBTPD: XCT BITCHK :IF THERES A CHAR IN BITPAD BUFF, DO IT
JRST TTYSLP JELSE SLEEP A BIT AND TRY AGAIN
PUSHJ P,BITPAD :GET INPUT FROM BITPAD
SETIM 1(P) ;return FALSE
POPJ P,
BITPAD: POP P,RETAD

HRRZM  SC2,RETVL1
HRRZM  SC3,RETVL2
HRRIM  SC4 ,RETVL3
FRC6: MOVEL ITEM,. 6 {FIRST IS 6 DIGITS
MOVEM ITEM, COUNTY
PUSHJ P.GETBYT

JRST FRC6 ;INSIST 0N GOOD DATA
MOVEM  SC1,FSTVAL
MOVEIL ITEM,5 :SECOND 1S 5 DIGITS
MOVEM ITEM,COUNT
PUSHJ P, GETBYT
JRST FRCH ;BAD DATA, LOOK FOR 6 BEFOE CONTINUING
INDON: MOVEM  SC1.@RETVL3 (RETURN VALUE3 (Y VALUE)
MOVE SC1,FSTVAL (STRIP OFF BUTTON FROM FSTVAL
101Vl SC1,+D100000
MOVEM  SC1.8RETVL1 {RETURN BUTTON (RETVL1)
MOVEM  SC2,8RETVLZ2 JRETURN VALUEZ (X VALUE)
JRST @RETAD
GETBYT: SETZ SC1, ;RETURN VALUE
BITILP: SOSG I18F+2 :COUNTER

PUSHJ P, REFBUF
1L0B SC2.IBF+1
CAIG sCz, 9" *DONT START TILL GET A DIGIT
CAIGE  scC2,"o"
JRST BITILP
CNTLOP: IMULI $C1.10
ADDI SC1.-+060(5C2) :SuM DIGITS

S056 COUNT :DIGIT COUNTER
JRST CcOoTCur
SQS6 IBF+2 :BUFF COUNTER
PUSHJ P, REFBUF
1L08 SC2.1BF+1 :NOW MUST HAVE 6 OR 6 DIGITS (1ST OR 2ND)
CAIG scz, 9~
CAIGE  S5C2."0"
JRST JITBAD :GARBLED .. LOOK FOR 6 AGAIN
JRST CNTLGP 16O FOR REST
GOTCNT: S5CS3 JJF+2 J3UFF CCU.TER
PUSHJ v, REFBUF
ILD8 SC2,18F+1 ;WEXT MUST LE 201-D1GIT

CAIG >72,"9"
CAIGE  .C2,"0" "
JKST  7.0C5D ;
BADCLR: S$NSG T Fe2 ('Y FIIY CURNET ]
PLT )t TOoNE

L TR SRR V- SR L )




2

60

I1L08 SC2,I8F+1

BIVBAD: CAIE $C2,1016 ; CARRET
JRST BADCLR ;NO, CLEAR THE CHARS
MOVEI sC1.-1
DBEEP  SC1,
QUTSTR [ASCIZ/Bad data/]
POPJ P, ,YES, RETURN ERROR
GOODEND : AQS (P) :GOOD ONE SKIPS BACK
POPJ P,
REFBUF : MOVE 1TEM, INCMD
XCT ITEM
S0S IBF+2
POPJ P, ;GO BACK WITH NEW DATA
PPSET: PPSEL 2 :PAGE PRINTER 2 ON
PPACT +0100000 ;SEE 2, erase 0
DPYPOS -450
DPYSIZ 02001 12 LINES AT BOTTOM OF SCREEN, SCROLL CONTINUOUSLY
LEYPOS 0 LINE EDITOR AT BOTTOM OF SCREEN
PPACT +0500000 ;SEE 2 and 0 (now cleared)
POPY P.
PPSET2: PPSEL 2 :PAGE PRINTER 2 ON
PPACT +0100000 :SEE 2, erase O
DPYPOS -400
DPYSIZ +04001 12 LINES AT BOTTOM OF SCREEN, SCROLL CONTINUOUSLY
LEYPOS O ;LINE EDITOR AT BOTTOM OF SCREEN
PPACT +0500000 :SEE 2 and 0 (now cleared)
POPJ P,
PPDONE: PPACT  t0400000 ;SEE 0 (clear 2)
DPYCLR LFREE PP 2
POPJ P,
BITOVC: EXP MODE
SIXBIT/TTY /
EXP 1BF
IBF: ExXP 0.0.0
TTIBFS: BLOCK 100
INTEGER INCMD,CHAN,LINE RETAD RETVL1 RETVL2 RETVL3,COUNT, FSTVAL,BITCHK
END
e —— B T —— S




Epipolar Program

10: Epipolar Registration Program

See section 4 for documentation on using this program.

Begin "epipolar determinations”

REQUIRE "16A" COMPILER_SWITCHES; comment FIXR,FLTR,ADJSP;
DEFINE »="3.1416926563";
DEFINE UNLESS="WHILE -";
DEFINE a="COMMENT ";

DEFINE THRU="STEP 1 UNTIL™:
DEFINE TAB="'11";

DEFINE CR=""15";

DEFINE LF=""12";

DEFINE CRLF="'16&'12"7;
DEFINE CCRLF="&'15&'12";
DEFINE NN=20:

REQUIRE "CAMRAS HDR[1,jfm]" SOURCE_FILE:
a Gennery's camera solver;
REQUIRE "MATRIX.HDRF1,JFM]" SOURCE_FILE;
a Matrix operation utilities;
REQUIRE "CHOSPT_HOR[S.HHB]" SOURCE_FILE;
a Harlyn's point matcher;
REQUIRE "PIXSAI[S.,HE)" LIBRARY;
REQUIRE "PIXFAI[S,HE]" LIBRARY:
a Source files for image manipulation procedures: see below;
EXTERNAL INTEGER PROCEDURE PIXEL(REFERENCE INTEGER PIX; INTEGER I,J):
a gets the value PIX of a pixel of coordinates I,J;
EXTERNAL PROCEDURE PUTEL(REFERENCE INTEGER PIX: INTEGER I,J,VALUE);
a sets the value PIX of a pixel of coordinates I,J;
EXTERNAL INTEGER PROCEDURE PFLDIM(STRING FILNAM);
a gets the proper array dimension to represent the image called FILNAM;
EXTERNAL INTEGER PROCEDURE GETPFL(STRING FILNAM; REFERENCE INTEGER PICTURE):
a fills array starting at PICTURE ( for dimension see PFLDIM )
with picture contained in file FILNAM;
EXTERNAL INTEGER PROCEDURE
PUTPFL(REFERENCE INTEGER PICTURE; STRING FILNAM; INTEGER MODE(1)):
a writes out a picture file FILNAM with data
contained in array starting at PICTURE:
EXTERNAL INTEGER PROCEDURE PIXDIM(INTEGER HEIGHT ,WIDTH,BITS);
a gets the proper array dimension to represent a HEIGHT x WIDTH image;
EXTERNAL INTEGER PROCEDURE MAKPIX(INTEGER HEIGHT ,WIDTH,BITS;
REFERENCE INTEGER PICTURE):
a creates an image array, starting at PICTURE, for a HEIGHT x WIDTH image;
EXTERNAL PROCECURE WIPE(REFERENCE INTEGER PIX; INTEGER value):
a makes evaery pixel of the array equal to value;

a Global vari-bl-s;

REAL ARRAY GG[1:5]:

a Adjusted values of the parameters (azimuth.elevation,pan.tilt,and rall);
REAL ARRAY RM[1:3.1:3]:

a rotation matrix between basel and base 2;
REAL ALPHA,BETA, GAMMA LAMDA MU ,NU;

a translation vector components in base 1 and 2;
INTECER ECASE:

a ECASE is a flag for the kind of geometry we have

£C2St=1 : tuo epipoles ( most common -2 )

61




62

ECASE=2 : one epipole in image 1
ECASE=3 : one epipole in image 2
4 ECASE=4 : no epipole;
INTEGER PBITS;
a number of bits per pixel, returned by CHOSPT:
REAL ARRAY E1.E2{1:2]:REAL ARRAY V1,V2[1:2];
a points and vectors in images 1 & 2,
epipoies or epipolar directions when they exist,
else, generic points and vectors;
REAL FF1 FF2;
a Focal distances in images 1 & 2;
REAL ARRAY M MINV[1:2,1:2].
a matrix A of the text and its inverse;
REAL K.N1;
a generic and tota) epiline numbers: 0sK<N1;
REAL LOX,LOY LNX, LNY;
a dimensions of the images( output of CHOSPT) and of the transforms;
INTEGER IK, ILOX,ILOY,ILNX, ILNY;
a the same. truncated. as integer variables:
REAL THETA.THETAQ THETA1 THETAZ;
a generic.minymum,maximum and increment
angles under which wmage 1 is viewed from El;
REAL PHI0 PHI?:
a min and max angles for image 2;
REAL DIMIN DI1MAX D2MAX D2MIN,D:
4 a minmimum, maximum and generic distances from epipoles to images 1 & 2;
: REAL ARRAY 0OF3[1:2]3:
a offset for case 3, used in epiline calculation;
INTEGER 1: a generic index;
BOOLEAN RIGHTI RIGHTZ;
a true if epipole right of image, ocutput of limits;
BCOLEAN DEBUG:
STRING P1.P2:
a filenames for images Pl and P2;
p - INTEGER SIZP SIZS;,
g a Size of the arrays that contain original and transformed image;

REAL ARRAY LX[1:NNJ]. a ARGUMENTS FOR CAMRAS;
REAL ARRAY LY[1:NN];
= REAL ARRAY RX[1:NHN):
v REAL ARRAY RY[1:NN]:

INTEGER NUM;

a 1/0 procedures:
INTEGER PROCEDURE GETAPSWYIR;

K Begin INTEGZR ANS; ANS«INCHRW LAND °'137; PRINT(CRLF): RETURN(ANS) End;
_ BOOLEAN PROCEDURE ASK{STRING QUESTION): a ask a yes/no quastion:
. Begin "ask”

e INTEGER ASK;
DO BEGIN print(question,”(Y or N)? ");
askegetdnswer;
END UNTIL ask="Y" v ask="N";
by . return(if ask="Y" then TRU:t else FALSE)
b €ad "ask”;

PROCLOURE GETD(REFENE ICE I .TEGER NuM; STRI{IG QULESTION: INTEGER EFAULT);
Begin "GETD™
PRINT(QUES . IC ):
" PTOSTR{O.CAW/. . LLA) )
. NUM ~ CVT( L)

- s




63
PROCEDURE SPACEPAUSE(STRING TEXT):

F BEGIN
INTEGER T;
PRINT{TEXT);
) DO T+«INCHRW UNTIL Te" =;
- PRINT(CRLF);
END;

PROCEDURE GETO(REFERENCE INTEGER NUM; STRING QUESTION; INTEGER DEFAULT):
Begin "GETO"
PRINT(QUESTION);
PTOSTR(0,CVOS(DEFAULT));
NUM « CVO(INCHWL)
End "GETO":

PROCEDURE GETF(REFERENCE REAL RNUM; STRING QUESTION: REAL DEFAULT):
Begin "GETF"
STRING NUMSTR;INTEGER BRCHAR;
PRINT(QUESTION);
PTOSTR(O,.CVF(DEFAULT)):
RNUM « REALSCAN(NUMSTR«INCHWL ,BRCHAR);
End "GETF";

1
i

a Arithmetic procedures:

3 SIMPLE PROCEDURE PROD2 (REAL ARRAY A,8,C):
3 a myltiplies 2°2 matrices;
BEGIN
REAL T; i
INTEGER I.J; '
FOR I«1 STEP 1 UNTIL 2 DO
BEGIN
T+0;
FOR Je1 STEr 1 UNTIL 2 DO
T e T+ B[1,3]°C[J]:

A[1]+T
- END
8 END;
58
X SIMPLE PRO.-DURE PROD3 (REAL ARRAY A.B.C):
k- a multiplies 3%3 matrices;
3 BEGIN
N REAL T;
i INTEGER I,J;
i - FOR I+«1 STEP 1 UNTIL 3 DO
X BEGIN
Y T«0;
B FOR J«1 STEP 1 UNTIL 3 0O
o T« T+ B[I,5]°C[J]:
9 A[I]eT
N END
P ENOD;
«
e
o PROCEDURE PARANETERS
i determinas the rotation matrix R and lhe translation vectar t in 'a3th boses;
o Begin "PARAMETERS"
-~ REAL ARRAY TM1{1:3,1:3],7T1.T2[1:3);
k- a TM1 is translaticay nz2iriz (=2srix * dr Comn r2)

*
]

IRy
o Ry




64

T1 and T2 are translation vectors in base 1 and base 2;
REAL ARRAY A1,A2,B1,B2,B3,D[1:3,1:3];

S§1¢82¢83+3;

ROTMAT(A1,D,66{1].-2):
ROTMAT(A2,D0,6G2],1):
ROTMAT(B1,D0,.GG[3],2):
ROTMAT(B2,D.GG[4],-1):
ROTMAT(B3,D,6G[53,-3):

MULT(TM1,A1,A2); a translation matrix;
MULT(D.B2,B1):

MULT(RM,B3,D);: a rotation matrix:

ALPHA«T1[1]«TM1[1,3]; a translation vector is 3rd column of translation matrix;
BETA~T1[2]«TM1[2,3]:
GAMMA-T1[3]+TM1[3,3]:

PROD3(T2.RM,T1): a T2 is translation vector in second base;

: LAMDA+T2[1]; i
R - MU«T2[2];
NUeT2{3]:

- PRINT("ROTATION MATRIX RM:" CRLF):
2 PRINT(RM[1,1],RM[1,2],RM[1,3],CRLF):
P> PRINI(RM[2.1].RM[2.2].RM[2,3],CRLF);
b PRINT(RM[3,1].RM[3,2].RM[3,3],CRLF);

PRINT("TRANSLATION VECTOR t:*,CRLF);
PRINT(ALPHA BETA, GAMMA "IN BASE ONE",CRLF):
PRINT(LAMDA, MU, MU, "IN BASE TWO", CALF);

end "PARAMETERS":

;
* a Geometric procedures:
SIMPLE PROCEDURE RECT(REAL EX,EY,VX,VY,RO;REFERENCE REAL X.Y):
a rect returns the rectangular coordinates of a point with olar coordinates
ro and o with respect to a shifted origin e(ex,ey).
¢f vx and vy are supposed proportional to cosa and sin a, but vx>0:
! a is always in [-n/2,#/2], and RO should have a sign;:
BEGIN "RECT"
X<SQRT(VX12+VY12);
VXeVX/ X
VYeVY /X,
XeEX+RO®VX;
Y+«EY+RO®VY,
END "RECT™;
PROCEDURE POLAR( REAL EX,EY X,Y; REFERENCE REAL THETA,RQ):
a POLAR returns the polar coordinates of a point (x,y) with respect to a
shifted origin (ex,ay)

B
"

RO is always a positive number,and THETA is in the determination [0,2«]:

Begin "POLAR™
RO-SQRT((EX-X)t2+(EY~Y)*2);
THETA=ATAN((EY-Y)/(EX-X)):
. If (X-EX)<0 THEN THETA~THETA+w;
DR IF THETA <0 THEM THETA+THETA+2%w:
! END "POLAR";




; | T

65
SIMPLE PROCEDURE NEWX( REAL EX,EY,VX VY.REFERENCE REAL NX);

a A point E has the coordinates EX and EY in a plane where there is a vector V.
If this plane is rotated so that V becomes the new X-axis, and shifted so
that the old origin is anywhere on the new Y-axis, the new abscissa of
E is just its projection onto V:;

BEGIN: NX-(EX*VX+EY®VY)/SQRT(VX*2+VY*2) ;END;

BOOLEAN PROCEDURE INPICTURE(REAL X,Y,LX,LY);
RETURN{ IF (OsXsLX A OSYsSLY) THEN TRUE ELSE FALSE);

. PROCEDURE LIMITS( REAL LX,LY,EX,EY;REFERENCE REAL ALPHAO,ALPHA1,0MIN, DMAX;

; REFERENCE BOOLEAN RIGHT);

a LIMITS returns:
1) the minimum and maximum distances DMIN and DMAX from a point
E to a rectangle of length LX and height LY with bottom l1eft corner st
origin.( typically, a picture and its epipole )
2) The minimum and maximum angle through which the rectangle is viewed
from point E. These angle ALPHAO and ALPHA1l are in the determination
[0.2%]( or occasionally, [-#/2.+%/2] ) and the distances are consequently
positive only.;

BEGIN "LIMITS"
REAL X,Y:
REAL B1,82.83.84;
DMIN+SQRT({EXT2+EY*2): a initialize;
DMAX«0 ;

FOR X+1 THRU LX DO
BEGIN
e DESCRIBE HORIZONTAL SIDES OF RECTANGLE;
DMAX+DMAX MAX SQRT((EX-X)*2+EY*+2) MAX SQRT((EX-X)*2+(EY-LY)*2);
DMIN<DMIN MIN SQRT((EX-X)}*2+EY12) MIN SQRT((EX-X)t2+({EY-LY)*2);
END;
FOR Y+1 THRU LY DO
BEGIN
a DESCRIBE VERTICAL SIDES OF RECTANGLE:
DMAX+~DMAX MAX SQRT(EX*2+(EY-Y)t2) MAX SQRT((EX-LX)t2+4(EY-Y)*2);
OMIN-DMIN MIN SQRT(EX*t2+(EY-Y)t2) MIN SQRY((EX-LX)*t2+(EY-Y)*2);
END;

e angle determination:
a A1) angles are initially supposed in [0,2#]:
IF(OsEXSLXY A DSEYSLX)THEN BEGIN
a epiline is inside the image;
ALPHAQ+0;
ALPHA1¢2%x;
END
ELSE BEGIN
a el is outside the image: '
determine the limit angles by inspecting the corners only;
POLAR(EX,EY,0,0,81,0);
POLAR(EX ,EY.LX,.0,82,D);
POLAR(EX ,EY,0,LY,B83,D0):
POLAR(EX,EY,LX,LY.54,0):
ALPHA1+( 81 MAX 82 MAX 3 MAX S4):
ALPHAQ+( 81 MIN B2 MIN B3 MIN B84);
IF ALPHA1-ALPHAO>» THEN BEGIN
a [0,2¢] is not a convenient interval for our angles
( the 3pipole is loft of the image, on the same vertical level);
a Argles are in [-»/2,%/2];
B1eALPHAL;
ALFHA1«ALTHAD;
ALPHAO+B1-2%x;
If DEJUG THEM FRINT("EPIPOLE ON LEFT SIDE AND SAME VERTICAL LEVEL AS IMAGE:",CRLF):
1f DEBUG THEN PRINT("FGR CONNEXITY, ANGLES ARE NOT CHOSEN IN [0,2#]"):
Te PENUG THIN ONTUT("IN LINITS, 0= " ALPHAO,CRLF):

4
i
H




66

IF DEBUG THEN PRINT("IN LIMITS, al= " ALPHA1,CRLF);

END;

a if epipole right of picture, set flag:

RIGHT+(EX>LX/2);

a and invert scanning order by exchanging angles;

IF RIGHT THEN BEGIN
B1-ALPHA1;

ALPHA1-ALPHAQ ;

ALPHAO+81;
END;
END;

END "LIMITS":

PROCEDURE FRAME( REAL EX,EY,VX.VY LX,LY.REFERENCE REAL I1X,I1Y,I12X,12Y:
REFERENCE BOOLEAN OUTFRAME);
a Given a point E and a vector V ( they define a line ), frame will determine, i
if they exist, the intersections of this line with the frame of the :
rectangle [0:LX,0:LY];

BEGIN "FRAME"

REAL X,Y;INTEGER FLAG;

PROCEDURE ASSIGN;

BEGIN "ASSIGN"

IF FLAG=0 THEN BEGIN I1XeX; IlY«Y; END;
IF FLAG=1 THEN BEGIN I2X«X: I2Y«Y; END; :
IF FLAG>1 THEN PRINT({"ERROR IN PROCEDURE FRAME",CRLF); !

FLAG-FLAG+1;
END “ASSIGN";

FLAG*O;

IF vX=0 THEN BEGIN

X«0;

YeEY+(X-EX)*VY/VX;

IF INPICTURE(X,Y,LX,LY) THEN ASSIGN;
XelX:

YoEY+(X-EX)*VY/VX;

IF INPICTURE(X,Y,.LX,LY) THEN ASSIGN;
END;

IF VYe0Q THEN BEGIN

Y+0;

X+EX+(Y-EY)OVX/VY;

IF INPICTURE(Y.X,LY,LX) THEN ASSIGN:
YeLY;

XeEX+(Y-EY)*VX/VY;

IF INPICTURE(Y,X.LY,LX) THEN ASSIGH;
END;

OUTFRAME«(FLAG=0);

IF DEBUG THEN PRINT (" goes through :

END "FRAME"

4 PROCEDURE DETCACE;

case 1: two epipoles E1 and E2
case 2: one epipole E1

case 3: one epigoln E2

case 4: n)y 2pipolcs;

", I1X,I1Y," and through: ",I2X,I2Y,CRLF);

a determines the nature of the epipolar guu..etry, acccrdiag to the code:




Begin "DETCASE"
REAL THRESHOLD: o MINIMUM POSITIVE NUMBER;

GETF( THRESHOLD , "MINIMUM CONVERGENCE ALLOWED: ",0.0001):

IF ABS(GAMMA)<THRESHOLD THEN

IF ABS(NU)<THRESHOLD THEN ECASE«4
ELSE ECASE«3
ELSE IF ABS(NU)<THRESHOLD THEN ECASE+2
ELSE ECASEe1;

PRINT(" CASE:" ,ECASE,CRLF);
end "DETCASE";

PROCEDURE EPIPOLES:
a determines the epipoles and/or the epipolar directions
It also calculates some parameters used by EPILINE ( matrix M and offset OF3 );

Begin "EPIPOLES”
REAL DELTA; a Determinant of matrix M;

IF(ECASE=1 v ECASE=2) THEN BEGIN
E1[1]-ALPHA®FF1/GAMMA;
E1[2]BETA*FF1/GAMMA;
PRINT("EPIPOLE E1:",E1[1],E1[2],CRLF):
END;
IF(ECASE=1 v ECASE=3) THEN BEGIN
E2[1]<LAMDA®*FF2/NU;
E2[2]+MU*FF2/NU;
PRINT("EPIPOLE E2:",E2[1],E2[2].CRLF);
a M is the main conversion matrix;
M[1,1]-NU*RM[1,1]~LAMDA*RM[3,1];
M[1,2]-NU*RM[1,2]~LAMDA®*RM[3,2]:
M[2,1)-NU*RM[2,1]-MU*RM[3,1];
M[2,2]¢NU*RM[2,2]~MU*RM[3,2]:

a Compute the inverse of matrix M for transformation P2+P1;
DELTA«M[1,1]*M[2.2]-M[1,2]*M[2.1];
IF DELTA=0 THEN PRINT("UNABLE TO INVERT MATRIX M : CAN'T DUMP
t*) ELSE

BEGIN

MINV[1.1]+ M[2,2]/DELTA;

MINV(2,2]« M[1,1]/DELTA;

MINV[1,2]+ -M[1,2]/DELTA;

MINV[2.1]¢ -M[2,1]/DELTA;

END;

IF ECASE=3 THEN BEGIN
« and OF3 is an offset used in ECATE 3;
OF3[1]+FF1*(NU*RM[1,3]-LAMDA®RM[3,3]);
OF3[2]+FF1*(NUSRM[2,3]-MU*RM[3,3]);
END;
END;
IF(ECASE=3 v ECASE=4) THEN BEGIN
VI[1]*ALPHA;
Vi[2]+8BETA;
IF Vi[1]<0 THEN BEGIN Vi[1]~~V1[1];Vi[2]e-V1[2] I 7
PRINT("EPIPOLAR DIRECTION V1:" ,Vi[1],V1[2].C. LF);
END:
IF(ECASE=2 v ECASE=4) THEN BEGIN
V2[1)*LAMDA;
vz{2]-Mu;
PRINT("EPIPOLAR DIRECTION v2:",v2[1]),v:[2].C. _F):
EXD;

67




68

End "EPIPOLES";

a more procedures:

PROCEDURE EPILINE;

Begin “"EPILINE";

IF ECASE=1 THEN BEGIN
a This is an epipolar vector in P1;
THETA-THETAO+(K+0.5)°THETA2; a take middle of interval;
V1{1J+COS(THETA):
V1[2]«SIN(THETA);
a make vl point to the right;
IF Vi[1]<0 THEN BEGIN VI[1]«-VI[1]:V1[2]+-V1[2] END;
a And this (V2) is the corresponding vector in P2;
PROD2(V2,.M.V1):
a make vl and v2 have consistent directions;
IF Vi[1)*V2[1]<0 THEN BEGIN V2[1]e-V2[1]:v2[2]~-V2[2];END;

END;

I1F ECASE=2 THEN BEGIN
a This is an epipolar vector in Pi;
THETA=THETAD+(K+0.5)*THETAZ;
V1[1]<COS(THETA);
V1[2]«SIN(THETA):
a And this is a point belonging to the twin line tn P2:

E2[1)«FF2*(RM[1,1]*VI[1]+RM[1,2]%V1[2])/(RM[3,1]*VI[1]+RM[3,2]°*V1[2]):
E2[2]-FF2*(RM[2.1]*V1[1]+RM[2,2]*Vv1[2])/(RM[3,1]*V1[1]+RM[ 3, 2]*V1[2]):

END;

IF(ECASE=3 v ECASE=4) THEN
IF ABS(V1{2])*LOXSV1I{1]°LOY THEN BEGIN
a We pick a point on the Y axis;
E1(1]+0.0;
E1[2])+«(LOX®ABS(VI[2]/VI[1])+LOY)*(X+0.5)/N1;
IF V1[2]>0 THEN E1[2]«E1[2]-LOX*Vi[2]/Vi[1]:
END
ELSE BEGIN
a We pick a point on the X axis;
E1[1]+(LOY*ABS(V1I[1]/VI[2])+LOX)*(K+D.5)/N1;
IF vi[2)>0 THEN E1[1]«E1[1]-LOY*Vi[1]/svi[2]:
€1[2]+0.0:
END;
IF ECASE=3 THEN BEGIN
a V2 directs the twin lipe in P2;
PROD2(V2 . M,E1);
v2{13J+v2{1]+0F3[1];
ve[2]+ve[2]+0F3[2]:
END;

IF ECASE=4 THEN BEGIN
a The twin line in P2 goes thru E2;
E2[1)«FF2*(RM[1.1]°E1[1]+RM[1,2]*E1[2]+RM[1,3]*FF1)
/(RM[3.,1]°E1{1]+RM[3,2]°E1[2]+RM[3,3]*FF1);
E2[2]+FF2*(RM[2.1]*E1[1]+RM[2,2]*E1[2]+RM[1,3]°FF1)
/(RM[3.1J°E1[1]+RM[3,2]°€1{2]+RM[3,3]°FF1);
END;

cad TEPIL! TT;




Begin "overhead";
; a DEBUG-ASK("DEBUG"); DEBUG+FALSE;
. If DEBUG THEN SETPRINT("DEBUG","B"):
F IF DEBUG THEN SETFORMAT(0,7) ELSE SETFORMAT(0,3):
CHOSPTS(LX,LY,RX,RY,NUM, ILOY, ILOX,PBITS,P1,P2,TRUE):
IF DEBUG THEN PRINT("NUM=" NUM,CRLF);
IF DEBUG THEN SETFORMAT(0,.7) ELSE SETFORMAT(0,3):
LOY«ILOY;LOX«ILOX;
End "overhead”;

69

PROCEDURE SOLVER;

a This procedure uses Gennery's code to do the camera registration from
a set of corresponding points in the two images. It allows the user
to pick the points on the images in an interactive way;

Begin "Solver”

REAL ARRAY X1[1:num],Y1[1:num],X2[1:num],Y2[1:num];: a chosen points;
REAL ARRAY SXX[1:num],SYY[1:num],SXY[1:num].
GP[1:5].SP[1:5]:
REAL ARRAY S[1:5,1:5]: a Covariance matrix of the errors in GG:
REAL ARRAY RESID[1:num,1:3];
REAL SD,ACC,.Q.CONV;
INTEGER SDP,CORDST;
INTEGER SODF ,MAXEDIT;
INTEGER NREJECT;
BOOLEAN ARRAY REJECT[1:num],FLAG[1:7];
BOOLEAN QUTPUT ,RESOUT;

FOR I«1 THRU NUM DO
B8egin "copy values”
X1[1]JetX{1]:YI[I]«LY[I]:

. X2[1]-RX[1]:Y2[1]~RY[I]:
il End "copy values";
e : FOR I+1 THRU NUM DO
L SXX[1]eSXY[I])+SYY[I]+0:
N GETF(FF1,"Focal length :",320); FF2¢FF1;
;8 GETD(MAXEDIT,"Number of points that can be rejacted:",0);
By SOP+0.67;CORDST+~0; SOF+0 ; OUTPUTRESOUT+(1=1):
i GP[1]+1.57:GP[2]+GP[3])+GP[4]~GP[5]+0.0;
3

CAMERA(FF1,FF2,SDP,CORDST,SDF ,NUM MAXEDIT,OUTPUT ,RESOUT,LX, LY RX RY, SXX,SYY, SXY,
GP,SP,GG,S,RESID,50,ACC,Q,CONV,NREJECT ,REJECT ,FLAG): a do the solving:

OUTSTR("Fina) values of parameters ~"&crlf);
PRINT(" azimuth:" ,CVF(GG[1]).crif);

- PRINT(" elevation:" ,CVF(GGI2]),cr1f);
PRINT(" pan:",CVF(GG[3]).cri1f):
PRINT("™ til1¢:",CVF(GG[4]).crif);
PRINT(" rol1:" ,CVF(GG[56]).cr1f);

End "Solver";

PROCEDURE NEWDIM:

] Begin "New_dimensions”
p. PRINT(CRLF);
iy GETF(M1,"NUMBER OF EPIDCLAT LJNZIS: ",10):




70

. CASE ECASE OF BEGIN "CASE 1"
. BEGIN END;

BEGIN
LIMITS(LOX,LOY, E2[1]),E2[2].PHIO . PHI1,D2MIN, D2MAX ,RIGHT2);
IF INPICTURE(E2[1].E2[2].LOX.LOY) THEN LNX<D2MAX+D2MIN
ELSE LNX«D2MAX-D2MIN;
LIMITS(LOX,LOY,E1[1]).E1[2] . THETAO . THETA1,D1MIN, JIMAX ,RIGHT1);
a thetaZ is the incremental angle;
THETA2+«( THETA1-THETAQ)/N1;
a the epipole is either inside or outside;
IF INPICTURE(E1[1],E1[2].LOX,LOY) THEN LNX-D1MAX+DIMIN MAX LNX
ELSE LNX«D1IMAX-DIMIN MAX LNX;

END;

BEGIN
NEWX(LOX.LOY,V2[1],V2[2],LNX);
LIMITS(LOX.LOY E1[1).E1[2), THETAD, THETA1 ,DIMIN,D1MAX ,RIGHT1);
IF INPICTURE(E1[1],E1[2],LOX,LOY) THEN LNX«DIMAX+DIMIN MAX LNX
ELSE LNX«DIMAX-DIMIN MAX LNX;

END;

BEGIN
NEWX{LOX.LOY.VI[1].VI[2].LNX);
LIMITS(LOX.LOY E2[1],E2[2].PHI0,PHI1,D2MIN,D2MAX, RIGHT2);
g IF INPICTURE(E2[1].E2[2].LOX,LOY) THEN LNX+DZMAX+D2ZMIN MAX LNX
2 ELSE LNX~DZMAX-D2MIN MAX LNX;
END;

BEGIN

; NEWX(LOX,LOY,Vv2[1].V2[2].LNX);
s NEWX(LOX.LOY,V1[1].Vi[2].LNY):
" LNX~LNX MAX LNY:

N END;

3 . END "CASE 1";

. LNX+LNX+1;

) LNY+N1;

s a prepare the integers to be used as indexes for arrays;
IKeK:TLOX«LOX; ILOY<LOY  ILNX~LNX; ILNYLNY;

PRINT("THE DIMENSION OF THE NEW PICTURES WILL BE: ",ILNX,"(+4) X " ILNY,CRLF); ‘

END "New_dimensions"”;

PROCEDURE PRINTLINE; .

BEGIN "PRINTLINE" ,
BOOLEAN OUTFRAME ,MANUAL . PAUSE ; ‘
REAL X1.Y1,X2,Y2; g
INTEGER IX1,IX2,1V1.1Y2; f

print(” If you chose the step-by-step option, the execution stops betwean",crif);
print(" each line, waiting for you to type Y".crif);

print(” If you do not chose this option, the execution proceeds automatically,”,crif):
k. printy" either in SLOW or FAST mode”.crif,crif);

. print(”"When printing is completed. type Y in both cases to return to the main program.’

MANUAL+ ASK("™ STEP-BY-STEP PRINTING "):
If MANUAL THEN ELSE PAUSE~ASK("SLOW MOTION"):
INITOVERLAY

FOR K«0 THRU N1-2 DO
BEGIN "1’1LOJP"




; IF MANUAL THEN ASK(" LEFT ") 71

ELSE IF PAUSE THEN CALL (1,"SLEEP®);
EPILINE;
FRAME(E1[1],E1[2],V1[1],V1[2],LOX,LOY,X1,¥1,X2,Y2,0UTFRAME);
IF OUTFRAME THEN PRINT("EPILINE # *.K," OFF PICTURE 1",CRLF)
ELSE BEGIN

IX16X1:IX26X2; IV16Y1;1Y2+Y2;

SETLEFT;

OVERLINE(IX1,1Y1,IX2,1Y2);

END;

IF MANUAL THEN ASK ("RIGHT ")
ELSE IF PAUSE THEN CALL (1,"SLEEP");
a PRINT (" In picture 2, ");
FRAME(E2[1].E2[2].V2[1],V2[2],LOX . LOY,X1,Y1,X2,Y2,0UTFRAME);
IF OUTFRAME THEN PRINT("EPILINE # " ,K,” OFF PICTURE 2",CRLF)
ELSE BEGIN
SETRIGHT;
IX16X1;IX2¢X2;1Y1¢Y1;1Y2¢Y2;
OVERLINE(IX1,IY1,1IX2,1Y2);
END;
END "MNLOOP"™;
SPACEPAUSE("Type <space> to continue: ");:
FINIOVERLAY;

END "PRINTLINE™;

PROCEDURE NEWC1( REAL X,Y;REFERENCE REAL Z REFERENCE INTEGER N);

a X and Y are the coordinates of a point in picture 2.
NEWC2 returns N and Z which are the number of the epipolar line( new ordinate)
and the position of the point on this 1ine ( new abscissa).:

begin "newcil”
1f ECASE=1 THEN BEGIN
POLAR( E1[1].E1[2].X.Y . THETA,Z);
IF(THETAOSTHETA+wSTHETA1) THEN THETA«THETA+w;
IF(THETAOSTHETA-aSTHETAL) THEN THETA+THETA-w;
1+1-D1MIN;
N~N1®(THETA-~THETAOQ)/(THETA1-THETA0)-0.5:
* END ELSE PRINT("SORRY, DEGENERATE CASE NOT YET DEVELOPPED");
end "newci”:

P

PROCEDURE NEWC2( REAL X,Y REFERENCE REAL 2:REFERENCE INTEGER N):

a NEWC2 does the same as newc2 in picture ®, but since the epilines are referenced
by their position in picture 1, this involve some transformation first.;

bagin "newc2"
IF ECASE=1 THEN BEGIN
POLAR(E2[1],E2[2].X,Y,THETA,Z);
1¢2-D2MIN;
V2[1]+COS(THETA):
: V2[2]«SIN(TnETA);
5 a And this (V1) is the corresponding vector in P1;
PROD2(V1,MINV,V2);
a now we find which angle v2 correspond to and what epiline that is;
. THETA-ATAN(VI[2]/Vi[1]):
IF(THET OSTHETA+wSTIETAL) THEN THETA«THETA+e:




72

IF(THETAOSTHETA-w<THETA1) THEN THETA+THETA-w:
Me-N1°( THETA-THETAQ)/( THETA1-THETAG)-0.5;
END ELSE PRINT("SORRY, DEGENERATE CASE NOT YET DEVELOPPED"):
end "newc2";

PROCEDURE TRANSFORM;
BEGIN "TRANSFORM"

BOOLEAN OUTFRAME ;

REAL X1,Y1,X2,Y2:

INTEGER IX1,IX2,IY1,.1Y2, NX,NN1 VALUE;

SAFE INTEGER ARRAY PP[0:SI2P-1),SS[0:SI12S-1]: a INPUT AND OUTPUT ARRAYS;
INTEGER XMIN, XMAX ,N: a Length info;

STRING EP1,EP2; a transforms filenames;

PROCEDURE CLEARARRAY;
BEGIN
FOR IK+~0 THRU N1-1 DO
FOR I~ O THRU ILNX-1 DO
PUTEL(SS[0].1K,I,0):
END;

PROCEDURE TRLINE( INTEGER IM; REAL EX, EY OMAX . OMIN;BOOLEAN INVERT );

BEGIN "TRLINE"
REAL LOWERD ,UPPERD: a PICTURE BOUNDS:
REAL VX, VvY;
If DEBUG THEN PRINT("EPILINE # " K,CRLF);
EPILINE:
e IF IM=1 THEN BEGIN VXeVI[1];VY«VI[2]:END
p-- ELSE BEGIN VXeV2{1]:VY«V2[2]:END;
“ 8 FRAME(EX . EY VX, VY, LOX,LOY, X1,Y1 X2 ,Y2 OUTFRAME):
13 If OUTFRAME THEN PRINT("EPILINE # " K.," OFF PICTURE ",IM,CRLF)
ELSE BEGIN
IKeK:IX1eX1:IX26X2;IY1¢Y1;IY2+Y2;
IF DEBUG THEN ELSE OVERLINE(IX1,IY1,1X2,1Y¥2);
XMINDMAX ; XMAX«0 ; a Initialize;
IF INVERT THEN BEGIN UPPERD+-DMIN:LOWERO«-DMAX;END
ELSE BEGIN UPPERD«DMAX: LOWERD+DMIN; END;
fFOR D+ LOWERD THRU UPPERD DO
BEGIN "pt-by-pt”
~ RECT(EX,EY, VX VY ,D,X1,Y1);
IF INPICTURE(X1,Y1,LOX,LOY) THEN
BEGIN "transfer”
IX1<X1;1IY1eY1; a coordinates on source image:
VALUE+PIXEL(PP[0].1IY1,IX1):
If DEBUG THEN OVERLIMNE(IX1,IY1,IX1,1Y1):
NX+~D-LOWERD;
XMINEXMIN MIN NX;
XMAX+-XMAX MAX NX:
PUTEL(SS[0].IK NX+4 VALUE):
3 END "transfer”;
- END “pt-by-pt":

NeXMI!l LSH -8; a 8 MSBs of boginning of line;
PUTEL(SS[0].IK,0.N):

NeXMIN LA4D *377; a B LSBs of beginning of line;
PUTEL(SS[0].IK,1.N):

NeXMAX LSH -8; a 8 MSBs of end of line;
PUTEL(SS[0].IK,2.N);

NeXtax LSND *377; *  a 8 LSBs of end of Vine;
PYTEL(ITT707.2%.3." )




__________________________ e e e e e e m——mm e ————ameame———————————— 73

a Start of main program;
BEGIN"Main™
OVERHEAD;
DO BEGIN
SOLVER;
PARAMETERS ;
DETCASE ;
EPIPOLES;
NEWDIM;

IF ASK("TRANSFORM THE IMAGES INTO EPIPOLAR SPACE ") THEN
IF ECASE=1 THEN BEGIN

SIZP+PFLDIM(P1);
SIZP~PFLDIM(P2) MAX SIZP;
ILNX«ILNX+4: a make space for line length info;
SIZS+~PIXDIM(ILNY,ILNX,PBITS);
TRANSFORM;
END

ELSE PRINT("NO TRANSFORMATION FOR OEGENERATE CASE")
ELSE IF ASK("DRAW EPIPOLAR LINES ") THEN PRINTLINE:

IF ASK({"DUMP THE PARAMETERS ") THEN DUMP;
END UNTIL ASK("ANOTHER TRY ")=FALSE;

END "Main”™;

End "epipolar determinations”;




74

END:;

END "TRLINE";

a body of procedure transtorm;

a DEBUG+ASK("DEBUG"):

PRINT("NEW LEFT PICTURE: "):
EP1-INCHWL
PRINT("NEW RIGHT PICTURE: "):
EP2+~INCHWL ;

PRINT("PICTURE 1:* ,CRLF):

INITOVERLAY:

SETLEFT;

GETPFL{P1.PP[D]}):

MAKPIX({ILNY,ILNX.PBITS.S5{07):

FDR X+D THRU M1-1 DO TRLINE{1,E1[1].E1[2].DIMAX DIMIN RIGHT1):
PUTPFL(SS[0).EP1):

FINIOVERLAY:

INITOVERLAY:

PRINT("PICTURE 2:" ,CRLF):

SETRIGHT;

GETPFL{P2,PP[OY):

MAKPIX(ILNY, ILNX,PBITS,SS[0]):

CLEARARRAY ;

FOR K+«0 THRU N1-1 DO 1RL1NE(2.EZ[}].EZ[Z].DZMAX,DZMIN,RIGMTZ):
PUTPFL(SS[0).EP2):

SPACEPAUSE ("Type <space> to continue: "}:

FINIOVERLAY:

END "TRANSFORM™:

PROCEDURE DUMP;

BEGIN "DUMP”

. SETFORMAT(0.7);
SETPRINT(NULL ,"8"):

PRINT("ECASE» ™ ECASE,CRLF);
PRINT("N1= ".N1,CRLF):

PRINT(“E1[1]» ".E1(1].CRLF):
PRINT("€1[2]~ ".E3[2].CRLF):
PRINT("E2[1]> ".E2[1].CRLF):
PRINT("E2{2]» ".E2[2].CRLF):
PRINT("THETAQ= " THETAD,CRLF);
PRINT("THETA1= " THETA1,CALF):
PRINT("DIMIN= " D1MIN,CRLF):
PRINT("02ZMIN= = D2MIN,CRLF);
PRINT("MINV[1.1]s " .MINV[1,1],CRLF):
PRINT("MINV[1.2]* = .MINV[1,2].CRLF);
PRINT("MINV[2.1]= ~.MINV[2,1],CHLF):
PRINT("MINV[2,23= = . MINV(2,2].CRLF):

SETPRINT(NULL,™T");

END "CUVPT,




References 75

11: References

{Arnold 1980]

|Arnold 1983]
[Baker 1981]
[Binford 1981]
[Brooks 1981]
[Duda 1973]
[Forney 1973]

[Gennery 1980}

|Gimel'farb 1972]

[Hallert 1960]

[Hannah 1974}

[Henderson 1979]

[Liebes 1981)

Arnold, R.D., and T.O. Binford, “Geometric Constraints in Stereo Vision,” Soc.
Photo-Optical Instr. Engineers, Vol. 238, Image Processing lor Missile Guidance,
1980, 281-292. (cited on pp. 8,9,27,30)

Arnold, R. David, “Automated Stereo Perception,” Department of Computer
Science, Stanford University, Ph.D. thesis, 1983. (pp. 27)

Baker, H. Harlyn, “Depth from Edge and Intensity Based Stereo,” University of
Illinois, Ph.D. thesis, September 1981. (pp. 1,27,28,30,31)

Binford, Thomas O., “Inferring Surfaces from Images,” Artificial Intelligence,
Vol. 17(1981), August 1981, 205-244. (pp. 8)

Brooks, Rodney A., ‘' Symbolic Reasoning Among 3-D Models and 2-D Images,”
Stanford Artificial Intelligence Laboratory, AIM-343, June 1981. (pp. 5,41)

Duda, R.O. and P.E. Hart, Pattern Classification and Scene Analysis,
Wiley, New York, 1973. (pp. 9)

Forney, G. David Jr., “The Viterbi Algorithm,” Proceedings of the IEEE, Vol.
61, No. 3, March 1973, 268-278. (pp. 30)

Gennery, Donald B., “Modelling the Environment of an Exploring Vehicle by
Means of Stereo Vision,” Ph.D. thesis, Stanford Artificial Intelligence Laboratory,
AIM 339, June 1980. (pp. 2,12,14,27)

Gimel'farb, G.L., V.B. Marchenko, and V.I. Rybak, “An Algorithm for Automatic
Identification of Identical Sections on Stercopair Photographs,” Kybernetica
(translations} No. 2, March-April 1972, 311-322. (pp. 30)

Hallert, Bertil, “Photogrammelry, Basic Principles and General Survey,” McGraw-
Hill Book Company Inc., 1960. (pp. 12,29)

Hannah, Marsha Jo, “Computer Matching of Areas in Stereo Images,” Ph.D.
thesis, Stanford Artificial Intelligence Laboratory, AIM-239, July 1974.  (pp.
27)

Henderson, Robert L., Walter J. Miller, C.B. Grosch, “Automatic Stereo
Recognition of Man-Made Targets,” Society of Photo-Optical Instrumentation
Engineers, Vol. 186, Digital Processing of Aerial Images, August 1979. A
more complete description is available as: “Geometric Reference Preparation
Interim Report Two: The Broken Segment Matcher,” Henderson, R.L., Rome
Air Development Centre, Rome, New York, RADC-TR-79-80, April 1979. (pp.
30)

Liebes Jr., S., “Geometric Constraints for Interpreting Images of Common
Structural Elements: Orthogonal Trihedral Veriices,” Proceedings of the DARPA
Image Understanding Worksho», 1231. (-~ 8)




7¢

(Lowe 1982]

[Marimont 1982}

[Moravec 1980]

[Perkins 1968]

[Quam 1971]

References

Lowe, David G., “Segmentation and Aggregation,” Proceedings of the DARPA
Image Understanding Workshop, Stanford University, September 1982. (pp.
3,8)

Marimont, David H., “Segmentation in ACRONYM,” Proceedings of the DARPA
Image Understanding Workshop, Stanford University, September 1982. {pp.
1,2,3,31,32,41)

Moravee, Hans P., “Obstacle Avoidance and Navigation in the Real World by a
Seeing Robot Rover,” Stanford Artificial Intelligence Laboratory, AIM -340, Ph.D.
thesis, September 1980. (pp. 12,27)

Perkins, “Cubic Corners,” in Quarterly Progress Report, MIT Electronics
Laboratory, April 15,1968 (pp. 7)

Quam, Lynn H., “Computer Comparison of Pictures,” Stanford Artificial
Inteiligence Leboratory, AIM-144, Ph.D. thesis, 1971.  (pp. 27)

-ﬂ:‘ - e

Y







